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Chapter 1

Theory

1.1 CI Formula Evolution

1.1.1 Example 1: Uniform Random Variable with 100% CI

Initial Setup

Random Variable x having uniform probability density function f(x).

f(x)

x
(θ − 1) θ (θ + 1)

1

2

Area=1

This simply means, the converge probability,

Pr(θ − 1 ≤ x ≤ θ + 1) = 1 (1.1)

That is, the probability that x could be within θ ± 1 is 1.

CI construction using Pivotal Quantity

In equation 1.1, by adding −θ to the inequalities, we get,

Pr(−θ + θ − 1 ≤ −θ + x ≤ −θ + θ + 1) = 1

Pr(−1 ≤ x− θ ≤ 1) = 1

(1.2)

Multiplying by −1, and adding x

2
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Pr(1 ≥ −x+ θ ≥ −1) = 1

Pr(x+ 1 ≥ θ ≥ x− 1) = 1

Pr(x− 1 ≤ θ ≤ x+ 1) = 1 (1.3)

Thus while x could take value only between θ ± 1 for given probability, Equation 1.3 states, θ
could also be only within x± 1 for same probability
.

Intuitive Proof

Suppose x takes a left extreme value as below within bounds θ ± 1.

f(x)

x
(θ − 1) (θ + 1)θ

1

2

Area=1

x0 x0 + 1

Then, we could already see, θ is at x0 + 1 still respecting the bounds x± 1.
Suppose x takes a right extreme value as below within bounds θ ± 1.

f(x)

x
(θ − 1) (θ + 1)θ

1

2

Area=1

x0x0 − 1

Then, we could already see, θ is at x0 − 1 still respecting the bounds x± 1.
Thus, while x could be only within θ± 1, it is also valid to say, θ could vary only within x± 1.

Pr(θ − 1 ≤ x ≤ θ + 1) = Pr(x− 1 ≤ θ ≤ x+ 1) = 1 (1.4)

1.1.2 Example 1b: Uniform Random Variable with 90% CI

Initial Setup

Random Variable x having uniform probability density function f(x).
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f(x)

x
(θ − 0.9) θ (θ + 0.9)

1

2

Area=0.9

This simply means, the converge probability,

Pr(θ − 0.9 ≤ x ≤ θ + 0.9) = 0.9 (1.5)

That is, the probability that x could be within θ ± 0.9 is 0.9 or 90%.

CI construction using Pivotal Quantity

In equation 5, by adding −θ to the inequalities, we get,

Pr(−θ + θ − 0.9 ≤ −θ + x ≤ −θ + θ + 0.9) = 0.9

Pr(−0.9 ≤ x− θ ≤ 0.9) = 0.9

(1.6)

Multiplying by −1, and adding x

Pr(0.9 ≥ −x+ θ ≥ −0.9) = 0.9

Pr(x+ 0.9 ≥ θ ≥ x− 0.9) = 0.9

Pr(x− 0.9 ≤ θ ≤ x+ 0.9) = 0.9 (1.7)

Thus, while x could take value only between θ ± 0.9 for given probability 0.9, above equation
states, θ could also be only within x± 0.9 for same probability.

Intuitive Proof

Suppose x takes a left extreme value as below within bounds θ ± 0.9.

f(x)

x
(θ − 0.9) θ (θ + 0.9)

1

2

Area=0.9

x0 x0 + 0.9
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Then, we could already see, θ is at x0 + 0.9 still respecting the bounds x± 0.9.
Simply put, when x is at x0 = θ − 0.9, then it automatically implies, θ = x0 + 0.9
Suppose x takes a right extreme value as below within bounds θ ± 1.

f(x)

x
(θ − 0.9) θ (θ + 0.9)

1

2

Area=0.9

x0x0 − 0.9

Then, we could already see, θ is at x0 − 0.9 still respecting the bounds x± 0.9.

Thus, while x could be only within θ ± 0.9, it is also valid to say, θ could vary only within
x± 0.9.

Pr(θ − 0.9 ≤ x ≤ θ + 0.9) = Pr(x− 0.9 ≤ θ ≤ x+ 0.9) = 0.9 (1.8)

1.1.3 Example 2: Uniform Random Variable with 100% CI

Initial Setup

Random Variable x having uniform probability density function

f(x) =
1

θ
for

1

2
θ ≤ x ≤ 3

2
θ (1.9)

f(x)

x
1
2θ

θ 3
2θ

1

θ

Area=1

This simply means, the converge probability,

Pr
(1

2
θ ≤ x ≤ 3

2
θ
)

= 1 (1.10)

That is, the probability that x could be within θ ± 1
2θ is 1
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CI construction using Pivotal Quantity

Multiplying by 2 in the inequalities,

Pr
(
θ ≤ 2x ≤ 3θ

)
= 1

Dividing by θ,..

Pr
(

1 ≤ 2x

θ
≤ 3
)

= 1

Dividing by x and inversing the inequalities, and again multiplying by 2..

Pr
(1

x
≤ 2

θ
≤ 3

x

)
= 1

Pr
(
x ≥ θ

2
≥ x

3

)
= 1

Pr
(

2x ≥ θ ≥ 2x

3

)
= 1

which is same as

Pr
(2x

3
≤ θ ≤ 2x

)
= 1 (1.11)

Intuitive Proof

Suppose x takes a left extreme value as below within bounds θ ± θ

2
.

f(x)

x
1
2θ

θ 3
2θ

1

θ

Area=1

x0 2x0

When x is at x0 =
θ

2
, then θ = 2x0

Suppose x takes a right extreme value as below within bounds θ ± θ

2
.
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f(x)

x
1
2θ

θ 3
2θ

1

θ

Area=1

x0
2x0
3

When x is at x0 =
3θ

2
, then θ =

2x0
3

Thus, while x could be only within θ ± θ

2
, it is also valid to say, θ could vary only within(2x

3
, 2x
)

.

Pr
(
θ − θ

2
≤ x ≤ θ +

θ

2

)
= Pr

(2x

3
≤ θ ≤ 2x

)
= 1 (1.12)

1.1.4 Example 3: Normal Distribution with 95% CI

Initial Setup

Random Variable x having uniform probability density function

f(x) =
1

σ
√

2π
e
− 1

2

(
X−µ
σ

)2

(1.13)

Area = 0.95

µ− 1.96σ µ µ+ 1.96σ

x

f(x)

This simply means, the converge probability,

Pr(µ− 1.96σ ≤ x ≤ µ+ 1.96σ) = 0.95 (1.14)

That is, the probability that x could be within µ± 1.96σ is 0.95 or 95%
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Why 1.96?

Let us standardize the distribution to standard normal distribution, Z =
X − µ
σ

.

When X = µ+ 1.96σ, Z =
µ+ 1.96σ − µ

σ
= 1.96

When X = µ− 1.96σ, Z =
µ− 1.96σ − µ

σ
= −1.96

The transformed distribution would look like below.

Area = 0.95

−1.96 0 1.96

z

f(z)

If we look at the Z table for Z = 1.96, we will find value as 0.975

If we look at the Z table for Z = −1.96, we will find value as 0.025
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The area between 0.975 and 0.025 is 0.975 − 0.025 = 0.95 or 95%. Thus, the value 1.96 was
born. It depends on the area we are interested. Here, we were interested in 95% area, so we get
Z = ±1.96

Note The Z table might be left tailed as we just saw or also sometimes right tailed due to
symmetrical nature of the curve. This realization is important because when we generalize CI,
we will often take right tailed. I used the conventional left tailed table above just to state this
explicitly as undoubting readers may miss this point.

CI construction using Pivotal Quantity

From equation 1.14, adding −µ on both sides of inequalities, we get,

Pr(−µ+ µ− 1.96σ ≤ x− µ ≤ −µ+ µ+ 1.96σ) = 0.95

Pr(−1.96σ ≤ x− µ ≤ 1.96σ) = 0.95

And then adding −x

Pr(−x− 1.96σ ≤ −x+ x− µ ≤ −x+ 1.96σ) = 0.95

Pr(−x− 1.96σ ≤ −µ ≤ −x+ 1.96σ) = 0.95

Multiplying by −1

Pr(x+ 1.96σ ≥ µ ≥ x− 1.96σ) = 0.95

Pr(x− 1.96σ ≤ µ ≤ x+ 1.96σ) = 0.95 (1.15)

Intuitive Proof

Suppose x takes left extreme value within bounds µ ± 1.96σ. That is, x0 = µ − 1.96σ Then,
µ = x0 + 1.96σ
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Area = 0.95

µ− 1.96σ µ µ+ 1.96σ

x0 x0 + 1.96σ x

f(x)

Similarly, when x0 = µ+ 1.96σ then directly we could derive, µ = x0 − 1.96σ

Area = 0.95

µ− 1.96σ µ µ+ 1.96σ

x0x0 − 1.96σ x

f(x)

So, as x0 varies from µ− 1.96σ to µ+ 1.96σ, implicitly, µ varies from x0 + 1.96σ to x0 − 1.96σ.
Thus,

Pr(µ− 1.96σ ≤ x ≤ µ+ 1.96σ) = Pr(x− 1.96σ ≤ µ ≤ x+ 1.96σ) = 0.95 (1.16)

1.2 CI for Sampling Distribution

1.2.1 95% CI as a Corollary

We already have seen, any sampling distribution for sample proportions or sample means, will

approach normal distribution, with X → µ and S → σ√
n

, where µ, σ, n are population mean,

population standard deviation, and sample size respectively, when respective conditions1 are met
as per Central Limit theorem (CLT). Note each x is a sample mean.

We thus have a normal distribution like below representing sampling distribution.

Area = 0.95

X − 1.96S X X + 1.96S

x

f(x)

1np ≥ 10 and nq ≥ 10 for sample proportions, n ≥ 30 for sample means
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Then, using equation 1.16, we have,

Pr(X − 1.96S ≤ x ≤ X + 1.96S) = Pr(x− 1.96S ≤ X ≤ x+ 1.96S) = 0.95

Pr(µ− 1.96
σ√
n
≤ x ≤ µ+ 1.96

σ√
n

) = Pr(x− 1.96
σ√
n
≤ µ ≤ x+ 1.96

σ√
n

) = 0.95 (1.17)

Thus, 95% CI for a Sampling distribution would be
(
x± 1.96 σ√

n

)
1.2.2 Generalized CI

As hinted in 1.1.4, we will use a right tailed Z table for generalization. We already saw, at Z =
-1.96, the area spanned would be 0.025. This could be written as

z0.025 = −1.96

Substituting in 1.17, we get,

Pr(x− 1.96
σ√
n
≤ µ ≤ x+ 1.96

σ√
n

) = 0.95

Pr(x+ z0.025
σ√
n
≤ µ ≤ x− z0.025

σ√
n

) = 0.95

This is kind of counter intuitive. Additive term comes on the LHS. Though one would later
discover, z0.025 is negative, it could be better if this is not raising any confusion in first place. This
is why we use right tailed Z table.

In case of right tailed Z table as below, note, at Z = 1.96, the area spanned is 0.025. Thus we
could write it as

z0.025 = 1.96
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Substituting in 1.17, we get,

Pr(x− 1.96
σ√
n
≤ µ ≤ x+ 1.96

σ√
n

) = 0.95

Pr(x− z0.025
σ√
n
≤ µ ≤ x+ z0.025

σ√
n

) = 0.95

This is good.
Let α be the desired significance level (which we will learn in hypothesis testing). In our case,

it is 5% or α = 0.05. Thus, 1− α = 0.95 and α
2 = 0.025

We could then rewrite above equation as,

Pr(x− zα
2

σ√
n
≤ µ ≤ x+ zα

2

σ√
n

) = 1− α (1.18)

This is the generalized CI equation where 1 − α is called the confidence coefficient and zα
2

is called the critical value

Note Confidence Interval CI indicates not an interval, where population mean is contained 95%
of time, but, if one continues to take many such samples and CI for each sample, then 95% of
those CIs would contain population mean. We do not know what those CIs are unless we know the
population mean and take many such sample sets and their CIs. Once we have taken enough such
sample sets (each sample set of size n) calculating CI each time, we could expect that 95% of those
CIs have population mean.

1.2.3 When σ is known

In 1.18, we have population standard deviation σ in both end points of the inequalities. Often
population parameters are not known in reality. So we have two cases: One when you are lucky
enough to known σ and another, you do not know. When you do know, still there are some more
parts in play. For example, the more the samples are taken from population, the closer the resulting
sampling distribution is to Normal (or Normal approximation is becoming better), so when do you
say, sample size n is good enough? This depends on various conditions.

1. If we sample from population whose distribution is itself normal, then even small sample size
n ≥ 5 would suffice because our sampling distribution easily approximates to Normal. Our
current CI equation holds good.

Pr(x− zα
2

σ√
n
≤ µ ≤ x+ zα

2

σ√
n

) = 1− α

2. If we sample from population whose distribution is not normal but symmetric, unimodal and
of the continuous type, then as per Central limit theorem (CLT), sample size n ≥ 30 should
be adequate generally as this would result in sampling distribution becoming almost normal
so our equation could still be approximately good. That is,

Pr(x− zα
2

σ√
n
≤ µ ≤ x+ zα

2

σ√
n

) ≈ 1− α (1.19)

3. If distribution is non normal and also highly skewed, even above approximation would not
work. In that case, it would be safer to use certain nonparametric methods for finding a CI
for the median of the distribution.
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1.2.4 When σ is not known

This is often the case in reality. In this case, depending on certain conditions like above, we could
use student’s t distribution2. The t distribution looks like normal, except the tails are bigger, and
also depends on degrees of freedom (which usually is n − 1). The proof is exhaustive, so we will
take at face value for now (and prove in future if time permits)

1. If we sample from population whose distribution is itself normal, and if sample size n ≤ 30,
then our CI equation would be,

Pr(x− tα
2
,(n−1)

s√
n
≤ µ ≤ x+ tα

2
,(n−1)

s√
n

) = 1− α (1.20)

where tα
2
,(n−1) is the t value for probability area α

2 , for degrees of freedom (n − 1) from
corresponding right tailed t table.

2. If we sample from population whose distribution is itself normal, and if sample size n > 30,
then our t distribution would already be almost equal to normal (and resulting sampling
distribution would be normal) so we could use as below,

Pr(x− zα
2

s√
n
≤ µ ≤ x+ zα

2

s√
n

) = 1− α (1.21)

3. If we sample from population whose distribution is not normal but symmetric, unimodal and
of the continuous type, and sample size n ≤ 30, we get approximate CI as below.

Pr(x− tα
2
,(n−1)

s√
n
≤ µ ≤ x+ tα

2
,(n−1)

s√
n

) ≈ 1− α (1.22)

4. If distribution is non normal and also highly skewed, even above approximation would not
work. In that case, it would be safer to use certain nonparametric methods for finding a CI
for the median of the distribution.

1.2.5 CI for difference between two means

This section is heavily inspired by Robert et al. [2], and I have tried to articulate in my style
to my understanding. Suppose that we are interested in comparing two approximately normal
sampling distributions described by random variables X = N(µx, σ

2
x) and Y = N(µy, σ

2
y), created

from population distributions described by random variables X(µx, σ
2
x) and Y (µy, σ

2
y). Note that

X represents collection of sample means from sampled sets sampled from X and similarly for Y .
Since both X and Y are normally distributed, and assuming both are independent to each other,
the distribution W = X−Y would be again a normal distribution W (µw, σ

2
w), where µw = µx−µy

and σ2w = σ2x + σ2y as proved in 3.0.1

Area = 1− α

µw − zα
2
σw µw µw + zα

2
σw

w

f(w)

2http://pages.wustl.edu/montgomery/articles/2757

http://pages.wustl.edu/montgomery/articles/2757
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Since W is a normal distribution now, we have the confidence interval as follows directly fol-
lowing equation 1.14

Pr(µ− zα
2
σ ≤ x ≤ µ+ zα

2
σ) = 1− α

Pr(µw − zα
2
σw ≤W ≤ µw + zα

2
σw) = 1− α

Pr(−zα
2
σw ≤W − µw ≤ zα

2
σw) = 1− α

Pr(−zα
2
≤ W − µw

σw
≤ zα

2
) = 1− α

Pr(−zα
2
≤ W − µw

σw
≤ zα

2
) = 1− α

Pr
(
− zα

2
≤ (X − Y )− (µx − µy)√

σ2x + σ2y

≤ zα
2

)
= 1− α

Pr

(
− zα

2
≤ (X − Y )− (µx − µy)√

σ2
x
n +

σ2
y

m

≤ zα
2

)
= 1− α (1.23)

where Z =
W − µw
σw

would be the ”standardized” normal distribution N(0,1), n and m are

sample set sizes of X(µx, σx) and Y (µy, σy) respectively.

Assuming σ unknown

Most of the times in reality, the population paramters are not known. So when the sample sizes
n,m are sufficiently large, we could use sample SDs (sx, sy) in place of (σx, σy).

Pr

(
− zα

2
≤ (X − Y )− (µx − µy)√

s2x
n +

s2y
m

≤ zα
2

)
≈ 1− α

And also rewriting, to find CI for (µx − µy), we get,

Pr
(

(X − Y )− zα
2
sw ≤ (µx − µy) ≤ (X − Y ) + zα

2
sw

)
≈ 1− α (1.24)

where, sw =

√
s2x
n +

s2y
m , and n,m are large.

When n,m are small

We would then use student’s t distribution as suggested by Welch and Aspin . The proof is
currently beyond the scope so we take it at face value.

Pr
(

(X − Y )− t(α
2
,r)sw ≤ (µx − µy) ≤ (X − Y ) + t(α

2
,r)sw

)
≈ 1− α (1.25)

where r is degrees of freedom. Since two distributions are involved, calculating r is complicated.
It is given as follows:
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r =

(
s2x
n +

s2y
m

)2
1

n−1

(
s2x
n

)2
+ 1

m−1

(
s2y
m

)2 (1.26)

Protection when σx = σy

Since we do not know σx, σy, it might be that they are also equal. If they happen to be equal, r
could be proven as below.

r = (n− 1) + (m− 1) = n+m− 2

The equation 1.26 protects in the sense that, the r value from that is lesser than above equation,
so t value is higher, or t distribution of wider variance assumed, thus being conservative. Some
texts simply also take r = min(n− 1,m− 1) as conservative approach.

A visual summary

Start

(σx, σy)
known?

(n,m) >
30?

σx == σy?

Use z

σw =

√
σ2
x
n +

σ2
y

m

Use z

σw =

√
s2x
n +

s2y
m

Use t

r =
(
s2x
n
+
s2y
m

)2

1
n−1

(
s2x
n
)2+ 1

m−1
(
s2y
m

)2

σw =

√
s2x
n + s2

m

Use t

r = n + m − 2

σw =

Sp

√
(n−1)s2x+(m−1)s2y

n+m−2

Sp =
√

1
n + 1

m

yesPR1

no

yesPR2

no

yesPR3

no

Welch’s tPR4
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1.2.6 CI for difference between two proportions

Suppose that we are interested in comparing two approximately normal sampling distributions

described by random variables
Y1
n1

= N
(
p1,

p1q1
n1

)
and

Y2
n2

= N
(
p2,

p2q2
n2

)
, created from population

distributions which are Bernoulli distributions.

Note that Y1 represents the sum of successes in a sample set, and thus
Y1
n1

represents sample

proportions. For example, for any kth sample set of
Y1
n1

, we calculate sample proportion statistic,

Y1k
n1

=
1

n

n∑
i=1

Y1ki, where Y1ki is ith sample in kth sample set of sampling distribution described by

Y1
n1

. Similarly for
Y2
n2

We could then rewrite 1.23 as below

Pr

(
− zα

2
≤

(Y1n1
− Y2

n2
)− (p1 − p2)√

p1q1
n1

+ p2q2
n2

≤ zα
2

)
= 1− α

In case you are wondering about the parameters inside, say W =
Y1
n1
− Y2
n2

, then

µw = µy1/n1
− µy2/n2

= p1 − p2
σ2w = σ2y1/n1

+ σ2y2/n2
= p1q1

n1
+ p2q2

n2
∴ σw =

√
p1q1
n1

+ p2q2
n2

Assuming σ unknown

Most of the times in reality, the population paramters are not known. So when the sample sizes
n,m are sufficiently large, we could use sample statistics ( p̂1q̂1n1 ,

p̂2q̂2
n2 ) in place of (p1q1n1 ,

p2q2
n2 ). This

results in further approximation of our confidence intervals. Thus when a sample is observed, we
have statistics

p̂1 =
y1
n1
, q̂1 = 1− y1

n1
, p̂2 =

y2
n2
, q̂2 = 1− y2

n2
,

Thus we could rewrite further as,

Pr

(
− zα

2
≤ (p̂1 − p̂2)− (p1 − p2)√

p̂1q̂1
n1

+ p̂2q̂2
n2

≤ zα
2

)
≈ 1− α (1.27)

When n,m are small

Currently I do not have an answer for this question and could not find online. Raised a ticket(?!)
here

https://stats.stackexchange.com/questions/369780/what-formula-for-confidence-intervals-for-difference-in-proportions-when-sample
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Examples

2.1 Deep Examples

2.1.1 Confidence Intervals for Sampling Proportions

Create Population

Let us create a population of 10000 balls, with 60% yellow balls. Programmatically, our population
contains 1s and 0s, 1 indicating yellow.

In[1]: %matplotlib inline

import matplotlib.pyplot as plt

from SDSPSM import get_metrics, drawBarGraph

from ci_helpers import create_bernoulli_population

T = 4000 # total size of population

p = 0.6 # 60% has yellow balls

# create population

population, population_freq = create_bernoulli_population(T,p)

# population metrics

mu, var, sigma = get_metrics(population)

# visualize

fig, (ax1) = plt.subplots(1,1, figsize=(5,3))

drawBarGraph(population_freq, ax1, [T, mu, var, sigma], 'Population

Distribution','Gumballs', 'Counts',xmin=0)

plt.show()

17
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Deriving and visualizing the probability Mass function (the intermediate density function, where
total area of bars will be 1, is just for fitting normal continous approximation later)

In[2]: from ci_helpers import mini_plot_SDSP

fig, (ax1,ax2,ax3) = plt.subplots(1,3,figsize=(15,4))

mini_plot_SDSP(population, ax1,ax2,ax3, norm_off=True)

plt.show()

Sampling from the Population

Let us sample from population, N no of times, each time with sample set of size n. If np ≥ 30
and nq ≥ 30, the resulting sampling distribution should be approximately normal. Remember, for
Population described by random variable Y, we describe the sampling distribution by
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for any sample set k, sample mean is Ŷk =
1

n

n∑
i=1

Yki

Random Variable p̂ = Ŷ = Ŷ1, Ŷ2, · · · Ŷk · · · ŶN

µp̂ = µ(Ŷ )

σp̂ = σ(Ŷ )

(2.1)

where the hat̂indicates the statistical outcome. And statistically by CLT,

µp̂ ≈ 0.6 = µ = p

σp̂ ≈ 0.0693 ≈ 0.4898√
50

=
σ√
n

=

√
p(1− p)

n

(2.2)

Note we have sampled WITH REPLACEMENT, so the samples are independent. If you
sample without replacement, you need to factor in FPC (finite population correction)
for each sample set’s SD.

In[3]: from ci_helpers import sample_with_CI

from random import seed

N = 100

n = 50

#seed(0)

# sample from population

Y_mean_list, CI_list = sample_with_CI(N, n, population, sigma=sigma, mode='z')

# sample metrics

mu, var, sigma = get_metrics(Y_mean_list)

# visualize

fig, (ax1,ax2,ax3) = plt.subplots(1,3,figsize=(15,4))

mini_plot_SDSP(Y_mean_list,ax1,ax2,ax3,width=0.05, norm_off=True)

from IPython.display import display, Math

display(Math(r'\mu_{{\hat{{p}}}}:{} \ \ \ \ \sigma_{{\hat{{p}}}}:{}'.format(mu, sigma)))

µp̂ : 0.6026 σp̂ : 0.0624
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When σ is known

For each of above sample set of size ’n’, let us calculate confidence interval using population SD
σ as below. 1.96 is from Z tranformation for 95% confidence interval, like we saw earlier in our
theoretical section.

CI = Y ± 1.96
σ√
n

(2.3)

In[4]: from ci_helpers import plot_ci_accuracy_1

fig, ax = plt.subplots(1,1, figsize=(20,5))

plot_ci_accuracy_1(ax, CI_list, mu)

plt.show()

CI containing pop.mean:96.0%

As expected we observe that out of all CIs above, 95% of them or above contain population
mean.

When σ is not known

For each sample mean Xk calculated, the confidence interval is calculated as below. Note, the
constant value tn−1 depends on degrees of freedom (n-1).
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CI = Y ± tn−1
Sk√
n

(2.4)

Hope you noted. This time, for each sample mean, we also calculate unbiased sample variable
of that set (that is, divided by n-1), and use that for calculating Mk. We sample again, because,
for each sample, this time, we calculate CI using t distribution.

t value for 95% CI:
Degrees of Freedom df = n − 1. For 95% confidence level, the confidence coefficient, 1 − α =

1− 0.05 = 0.95.
To calculate t in python, we simply need to pass, (1−α, df). A sample calculation shown below

for sample size n = 10

In[5]: from scipy import stats

print(stats.t.ppf(1-0.025, 10-1))

2.2621571627409915

Now to our sampling distribution. Note, we are getting an approximate normal distribution.

In[6]: from ci_helpers import sample_with_CI

N = 100

n = 50

#seed(0)

# sample from population, this time in t mode,

# so CI intervals are calculated with t value 2.093

Y_mean_list, CI_list = sample_with_CI(N, n, population, sigma=sigma, mode='t')

# sample metrics

mu, var, sigma = get_metrics(Y_mean_list)

# visualize

fig, (ax1,ax2,ax3) = plt.subplots(1,3,figsize=(15,4))

mini_plot_SDSP(Y_mean_list,ax1,ax2,ax3,width=0.05, norm_off=True)

from IPython.display import display, Math

display(Math(r'\mu_{{\hat{{p}}}}:{} \ \ \ \ \sigma_{{\hat{{p}}}}:{}'.format(mu, sigma)))

plt.show()

µp̂ : 0.5976 σp̂ : 0.0854
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In[7]: from ci_helpers import plot_ci_accuracy_1

fig, ax = plt.subplots(1,1, figsize=(20,5))

plot_ci_accuracy_1(ax, CI_list, mu)

plt.show()

CI containing pop.mean:93.0%

Generally we should get more than 95% as above. Above result just means, if we take a sampling
size, and calculate CI, and do that 100 times, about 95 times our CI would contain population mean,
and our result gave 97 times. We could expect at least 95% most of the time. But can we get any
idea, how that ”success” of getting population mean in our CI, 95% of time, depends on sample
size? We get it, greater the sample size, better, but how it would be? Let us take our simulation
to next scale as below, trying with various experiment and sample sizes.

Digging deeper 1

What if I use Z distribution and unbiased sample SD even for CI? What happens when I use t
distribution but population SD for CI? We will find out what happens in such cases below.

Environment:
1. Population size T, fixed
2. Sample size n, varied
3. Experiment size N, varied
4. Sampling with or without replacement, varied.

Applied methods:
1. Z distribution and population SD
2. Z distribution and unbiased sample SD
3. T distribution and population SD
4. T distribution and unbiased sample SD

Note, in case of sampling without replacement, each sample SD is corrected with FPC (Finite
Population Correction)

In[8]: from ci_helpers import plot_summary

max_sample_size = int(T/4) # 25% of total population

N_list = range(5,500,20)
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n_list = range(5,max_sample_size,50) # different sample sizes

plot_summary(population, N_list, n_list)
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Note that, as per color gradient used, lighter the dots, nearer they are to 95%. And if green
they are above 95%. And if pink, they are below 95%. So more the green dots or lighter dots, the
better, the CI performance.

1. Compared to graphs using sample SDs on right hand side, the graphs using population SDs
on left hand side, has more dots that are green and lighter indicating better CI performance
on LHS. This is especially very pronounced, when sample sizes are small (observe dark dots
at n = 10). LHS almost always have green dots at n = 10 while RHS has mostly pinky dots.

2. For a common SD usage, there is not much a difference between using Z or t distribution
when n ≥ 30 . For eg, compare figures 01 and 11 both using population SD. Or compare 02
and 12 both using sample SD.

3. Comparing figures 01 and 11 at n = 10 we observe, figure 11 performs better (more darker
green dots). So when you know σ, and if n < 30 using Z distribution is better.

4. Comparing figures 02 and 12 at n = 10 we observe, figure 12 performs better (lighter pink
dots). So when you do not know σ and if n < 30, using T distribution with unbiased sample
SD is better.

5. Similar observation also applies to sampling with replacement.

Though the limit 30 is not obvious from above graphs, this number has been arrived at by
statisticians after extensive research

Warning

The CI for proportions have been always blotchy. Though above formula are straight forward,
they have been proven ineffective, effectively by Brown et al. [1]. When you use CI for
proportions problem in a practical scenario do use the alternatives provided there. In a
nutshell, for smaller sizes, n < 40, Wilson or the equal-tailedJeffreys prior interval are
recommended. For larger n, the Wilson, the Jeffreys andthe Agresti–Coull intervals are all
comparable, and the Agresti–Coull interval is the simplest to present.

2.1.2 Confidence Intervals for Sample Means

Create Population

Let Y be the random variable indicating temperature over a distribution of certain values.
If limiting values are say, 0 deg C to 40 deg C, our population would thus look like this:
[23, 13, 35, 50, 10, 2, 5, 0, 33, · · · , 21] Unlike Sample proportions,we do not know or designate any
proportion of temperatures in this example, but we know the mean and variance by simply calcu-
lating all values in the distribution. These would be our population parameters.

Population mean µ = µy
Population variance σ2 = σ2y

In[9]: %matplotlib inline

from math import floor

import matplotlib.pyplot as plt

from random import random, seed, shuffle

from SDSPSM import get_metrics, drawBarGraph, getPopulationStatistics

from ci_helpers import createRandomPopulation

seed(0)

popMin = 1 # Min population
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popMax = 40 # Max population

freqMax = 200 # freq of any set of population (for eg, no of occurances of temperatures

at 25 deg C)

population, population_freq = createRandomPopulation(popMax - popMin + 1, freqMax)

N, mu, var, sigma = getPopulationStatistics(population_freq, popMin)

#visualize

fig, (ax1) = plt.subplots(1,1, figsize=(16,3))

drawBarGraph(population_freq, ax1, [N, mu, var, sigma], 'Population

Distribution','Temperature', 'Counts')

plt.show()

Let us visualize the density function and PMF as usual.

In[10]: from ci_helpers import mini_plot_SDSM

fig, (ax1,ax2,ax3) = plt.subplots(1,3,figsize=(15,4))

mini_plot_SDSM(population, ax1, ax2, ax3, popMax, width=1)

plt.show()

Sampling from the Population

Let us sample from above population, N no of times, each time with sample set of size n. If n > 30,
the resulting sampling distribution should be approximately normal (always if population itself was
normally distributed)

Remember, for Population described by random variable Y, we describe the sampling distribu-
tion of sample means by
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µY = µ(Ŷ )

σY = σ(Ŷ )

(2.5)

where thêindicates the statistical outcome. And statistically by CLT,

µY = 19.4 ≈ 20 = µ

σY ≈ 1.52 ≈ 11.32√
50

=
σ√
n

(2.6)

Y is called the sample means which is a random variable.

In[11]: from ci_helpers import sample_with_CI

from random import seed

N = 100

n = 50

#seed(0)

# sample from population

Y_mean_list, CI_list = sample_with_CI(N, n, population, sigma=sigma, mode='z')

# sample metrics

mu, var, sigma = get_metrics(Y_mean_list)

# visualize

fig, (ax1,ax2,ax3) = plt.subplots(1,3,figsize=(15,4))

mini_plot_SDSM(Y_mean_list, ax1, ax2, ax3, popMax, width=0.1)

from IPython.display import display, Math

display(Math(r'\mu_{{\hat{{p}}}}:{} \ \ \ \ \sigma_{{\hat{{p}}}}:{}'.format(mu, sigma)))

µp̂ : 19.5912 σp̂ : 1.5865

Ok I get it, the resulting distribution and density functions look abnormal (ugly, slightly
normal). Try increasing experiment size N, and you will see much better approximation
of normal distribution. We had to stick with N=100 because we have to see how CI
from each sample mean performs, so bear with me here.
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When σ is known

For each of above sample set of size ’n’, let us calculate confidence interval using population SD
σ as below. 1.96 is from Z tranformation for 95% confidence interval, like we saw earlier in our
theoretical section.

CI = Y ± 1.96
σ√
n

(2.7)

In[12]: from ci_helpers import plot_ci_accuracy_1

fig, ax = plt.subplots(1,1, figsize=(20,5))

plot_ci_accuracy_1(ax, CI_list, mu)

plt.show()

CI containing pop.mean:95.0%

When σ is not known

When we do not know population SD
Just like earlier, for each sample mean Xk calculated, the confidence interval is calculated as

below. Note, the constant value tn−1 depends on degrees of freedom (n-1).

CI = Y ± tn−1
Sk√
n

(2.8)

In[13]: from ci_helpers import sample_with_CI

N = 100

n = 50

#seed(0)

# sample from population, this time in t mode,

# so CI intervals are calculated with t value 2.093

Y_mean_list, CI_list = sample_with_CI(N, n, population, sigma=sigma, mode='t')

# sample metrics

mu, var, sigma = get_metrics(Y_mean_list)

# visualize

fig, (ax1,ax2,ax3) = plt.subplots(1,3,figsize=(15,4))
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mini_plot_SDSM(Y_mean_list, ax1, ax2, ax3, popMax, width=0.1)

from IPython.display import display, Math

display(Math(r'\mu_{{\hat{{p}}}}:{} \ \ \ \ \sigma_{{\hat{{p}}}}:{}'.format(mu, sigma)))

plt.show()

µp̂ : 19.6824 σp̂ : 1.5962

In[14]: from ci_helpers import plot_ci_accuracy_1

fig, ax = plt.subplots(1,1, figsize=(20,5))

plot_ci_accuracy_1(ax, CI_list, mu)

plt.show()

CI containing pop.mean:97.0%

Digging deeper 2

What if I use Z distribution and unbiased sample SD even for CI? What happens when I use t
distribution but population SD for CI? We will find out what happens in such cases below.

Environment:
1. Population size T, fixed
2. Sample size n, varied
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3. Experiment size N, varied
4. Sampling with or without replacement, varied.

Applied methods:
1. Z distribution and population SD
2. Z distribution and unbiased sample SD
3. T distribution and population SD
4. T distribution and unbiased sample SD

Note, in case of sampling without replacement, each sample SD is corrected with FPC (Finite
Population Correction)

In[15]: max_sample_size = int(T/4) # 25% of total population

N_list = range(5,500,20)

n_list = range(5,max_sample_size,50) # different sample sizes

plot_summary(population, N_list, n_list)
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Note that, as per color gradient used, lighter the dots, nearer they are to 95%. And if green
they are above 95%. And if pink, they are below 95%. So more the green dots or lighter dots, the
better, the CI performance.
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1. Compared to graphs using sample SDs on right hand side, the graphs using population SDs
on left hand side, has more dots that are green and lighter indicating better CI performance
on LHS. This is especially very pronounced, when sample sizes are small (observe dark dots
at n = 10). LHS almost always have green dots at n = 10 while RHS has mostly pinky dots.

2. For a common SD usage, there is not much a difference between using Z or t distribution
when n ≥ 30 . For eg, compare figures 01 and 11 both using population SD. Or compare 02
and 12 both using sample SD.

3. Comparing figures 01 and 11 at n = 10 we observe, figure 11 performs better (more darker
green dots). So when you know σ, and if n < 30 using Z distribution is better.

4. Comparing figures 02 and 12 at n = 10 we observe, figure 12 performs better (lighter pink
dots). So when you do not know σ and if n < 30, using T distribution with unbiased sample
SD is better.

5. Similar observation also applies to sampling with replacement.

Though the limit 30 is not obvious from above graphs, this number has been arrived at by
statisticians after extensive research.

Yes, the inferences are same as Section 2.1.1 except that the differences are much more clearer
in this case. For eg, compare figures 02 and 12 at n = 10. It is very clear now, why figure 12 (using
t distribution) is far better at lower sample sizes.

2.2 Shallow Examples

2.2.1 σ Known, Population Normal, Low Sample Size

Let X equal the length of life of a 60-watt light bulb marketed by a certain manufacturer. Assume
that the distribution of X is N(µ, 1296). If a random sample of n = 27 bulbs is tested until they
burn out, yielding a sample mean of x = 1478 hours, find 95% confidence interval for µ.

Solution: Here, its given that the population is Normal and also its population SD σ. So we
could use equation 1.18 right away. Given
σ2 = 1296 ∴ σ = 36,
x = 1478, 1− α = 0.95,
zα

2
= z0.025 = 1.96, n = 27 ≥ 5
Though sample size is < 30, the population distribution is given as normal already. Thus, our

sampling distribution would still be a normal distribution as below with 95% confidence interval
area.

The tikzmagic extension is already loaded. To reload it, use:

%reload ext tikzmagic
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We already know, in this sampling distribution, the mean X → µ and SD S → σ√
n

. Thus as

we have already derived earlier,

Pr
(
X − 1.96S ≤ x0 ≤ X + 1.96S

)
= 1− α

Pr
(
x0 − 1.96S ≤ X ≤ x0 + 1.96S

)
= 1− α

Pr
(
x0 − 1.96

σ√
n
≤ µ ≤ x0 + 1.96

σ√
n

)
= 1− α

=⇒ Pr
(

1478− 1.96
36√
27
≤ µ ≤ 1478 + 1.96

36√
27

)
= 0.95

Pr
(

1478− 13.58 ≤ µ ≤ 1478 + 13.58
)

= 0.95

Pr
(

1464.42 ≤ µ ≤ 1491.58
)

= 0.95

Thus the 95% CI intervals are [1464.42, 1491.58]. This does not mean, µ is inside this interval
95% of the time. But simply, if we are to take many such samples and their CIs, 95% of those CIs
would contain µ. We do not know what those CIs would be because we do not know the real µ.

2.2.2 σ Known, Population not Normal, High Sample Size

The operations manager of a large production plant would like to estimate the mean amount of
time a worker takes to assemble a new electronic component. Assume that the standard deviation
of this assembly time is 3.6 minutes. After observing 120 workers assembling similar devices, the
manager noticed that their average time was 16.2 minutes. Construct a 92% confidence interval
for the mean assembly time.

Solution:
Given n = 120 which is > 30. The measurement in population is mean amount of time which is

continuous. Due to CLT, the resulting sampling distribution of sample means from all sample sets of
size n = 120 would result in a normal continuous distribution. Since population distribution is not
normal (at least not given specifically), we could expect our confidence interval to be approximate
only. Population SD σ is given as known which is 3.6 minutes. The sample mean of sample set is
16.2 minutes, thus x = 16.2

Summarizing,
x = 16.2, n = 120, σ = 3.6

1− α = 0.92, α = 0.08,
α

2
= 0.04

Since resulting sampling distribution is normal,we could use Z distribution. Remember, we use
right tailed Z table here. Recall 1.2.2. Using this table, we get

zα
2

= z0.04 = 1.75

https://www.utdallas.edu/~mbaron/3341/Practice12.pdf
http://www2.stat.duke.edu/~rcs46/lectures_2015/14-bayes1/z-table.pdf
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Using 1.19,

Pr
(
x− zα

2

σ√
n
≤ µ ≤ x+ zα

2

σ√
n

)
≈ 1− α

Pr
(

16.2− 1.75
3.6√
120
≤ µ ≤ 16.2 + 1.75

3.6√
120

)
≈ 0.92

Pr
(

16.2− 0.575 ≤ µ ≤ 16.2 + 0.575
)
≈ 0.92

Pr
(

15.625 ≤ µ ≤ 16.775
)
≈ 0.92

Thus the 92% confidence intervals for given sample set is [15.625,16.775]

2.2.3 σ Unknown, Population Normal, Low Sample Size

To assess the accuracy of a laboratory scale, a standard weight that is known to weigh 1 gram is
repeatedly weighed 4 times. The resulting measurements (in grams) are: 0.95, 1.02, 1.01, 0.98.
Assume that the weighings by the scale when the true weight is 1 gram are normally distributed
with mean µ. Use these data to compute a 95% confidence interval for µ

Solution:
The population is given as normally distributed with σ unknown. Due to low sample size

n = 4 < 30, the resultant sampling distribution would be of student’s t distribution, than normal,
so we need to use that.

Parameters of the sample set:

In[22]: x = [0.95, 1.02, 1.01, 0.98]

def get_metrics(x):

from math import sqrt

n = len(x) # sample size

x_bar = sum(x)/n # unbiased sample mean

var = sum( [(x_i - x_bar)**2 for x_i in x] )/(n-1)

s = round(sqrt(var),3) # unbiased sample SD

return n, x_bar, var, s

n,x_bar,_,s = get_metrics(x)

print('n:{} x_bar:{} s:{}'.format(n,x_bar,s))

n:4 x bar:0.99 s:0.032

Summarizing,
n = 4, x = 0.99, s = 0.032, 1− α = 0.95
tα
2
,(n−1) = t 0.05

2
,3 = t0.025,3

Using right tailed t table, t0.025,3 = 3.182
If we continued taking sample sets of this size n = 4, we would end up getting a sampling

distribution that has student’s t distribution as below.

https://www.utdallas.edu/~mbaron/3341/Practice12.pdf
http://pages.stat.wisc.edu/~ifischer/Intro_Stat/Lecture_Notes/APPENDIX/A5._Statistical_Tables/A5.2_-_t-distribution.pdf
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Thus, using 1.20,

Pr
(
x− tα

2
,(n−1)

s√
n
≤ µ ≤ x+ tα

2
,(n−1)

s√
n

)
= 1− α

Pr
(

0.99− t(0.025,3)
0.032√

4
≤ µ ≤ 0.99 + t(0.025,3)

0.032√
4

)
= 0.95

Pr
(

0.99− 3.182
0.032√

4
≤ µ ≤ 0.99 + 3.182

0.032√
4

)
= 0.95

In[25]: def get_CI(x_bar, zrt, s, n):

from math import sqrt

m = zrt*(s/(sqrt(n)))

return [x_bar-m,x_bar+m]

t = 3.182

print(get_CI(x_bar, t, s, n))

[0.939088, 1.040912]

∴ the 95% CI in our case are,

Pr
(

0.94 ≤ µ ≤ 1.04
)

= 0.95

2.2.4 σ Unknown, Population not Normal, High Sample Size

In order to ensure efficient usage of a server, it is necessary to estimate the mean number of
concurrent users. According to records, the sample mean and sample standard deviation of number
of concurrent users at 100 randomly selected times is 37.7 and 9.2, respectively.Construct a 90%
confidence interval for the mean number of concurrent users.

Solution
The measurement at hand is mean number of concurrent users. This is a continuous random

variable. Irrespective of population distribution, if sample size is large enough, due to CLT, even-
tually the sampling distribution formed will be normal. Here n = 100 > 30, so we would at least
approximately could get good enough CI with 90% confidence level as asked.

Summarizing,
n = 100, x = 37.7, s = 9.2

1− α = 0.9, α = 0.1, α
2 = 0.05

This time, we shall use code to find the right tailed z area,..

In[26]: def get_z(cl):

from scipy import stats

alpha = round((1 - cl)/2,3)

return (-1)*(round(stats.norm.ppf(alpha),3)) # right tailing..

print(get_z(0.90))

1.645

https://www.utdallas.edu/~mbaron/3341/Practice12.pdf
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Thus, z0.05 = 1.645 Using 1.21, but also using approximation as we do not know population
distribution,

Pr
(
x− zα

2

s√
n
≤ µ ≤ x+ zα

2

s√
n

)
≈ 1− α

Pr
(

37.7− z0.05
9.2√
100
≤ µ ≤ 37.7 + z0.05

9.2√
100

)
≈ 0.9

Pr
(

37.7− 1.645
9.2√
100
≤ µ ≤ 37.7 + 1.645

9.2√
100

)
≈ 0.9

In[27]: x, z, s, n = 37.7, 1.645, 9.2, 100

print(get_CI(x, z, s, n))

[36.186600000000006, 39.2134]

Thus the desired 90% CI intervals are [36.2,39.2]
Note: Since the sample size is high, even if t distribution is used, result would be almost same,

because at such high sample sizes, t distribution would be almost identical to z distribution.

2.2.5 Difference between two means, Welch’s ’t’ interval

The species, the deinopis and menneus, coexist in eastern Australia. The following summary statis-
tics were obtained on the size, in millimeters, of the prey of the two species. Calculate the 95%
confidence interval for the difference in their means.

Adult Dinopis Adult Menneus

n=10 m=10
x = 10.26mm y = 9.02mm
s2x = (2.51)2 s2y = (1.90)2

Solution
Given:

Let X = N(µx, σ
2
x) be the random variable of sampling distribution for Adult Dinopis. And so is

Y = N(µy, σ
2
y) for Adult Menneus. Then we are given one sample set data frame from each species.

x1 = 10.26mm, sx = 2.51 mm, n = 10
y1 = 9.02mm, sy = 1.90 mm, m = 10
1− α = 0.95, α = 0.05, α2 = 0.025

Approach:
Note the σx, σy are unknown. Also both n,m are small n < 30,m < 30. It is totally not needed
that n = m, but in this case we have that. Recalling 1.25 and 1.26,

Pr
(

(X − Y )− t(α
2
,r)sw ≤ (µx − µy) ≤ (X − Y ) + t(α

2
,r)sw

)
≈ 1− α

https://onlinecourses.science.psu.edu/stat414/node/203/
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x1 − y1 = 10.26− 9.02

sw =

√
s2x
n

+
s2y
m

=

√
2.512

10
+

1.902

10

r =

(s2x
n

+
s2y
m

)2
1

n− 1

(s2x
n

)2
+

1

m− 1

(s2y
m

)2 =

(2.512

10
+

1.902

10

)2
1

9

(2.512

10

)2
+

1

9

(1.902

10

)2
In[28]: x_1, y_1, s_xbar, s_ybar, n, m = 10.26, 9.02, 2.51, 1.90, 10, 10

w_1 = round(x_1 - y_1,3)

def get_s_w(s_x, s_y,n,m):

v_x, v_y = (s_x**2)/n, (s_y**2)/m

from math import sqrt

return round(sqrt(v_x + v_y),4)

s_w = get_s_w(s_xbar, s_ybar, n, m)

def get_r(s_x, s_y,n,m):

v_x, v_y = (s_x**2)/n, (s_y**2)/m

num = (v_x + v_y)**2

den_1 = (1/(n-1))*((v_x)**2)

den_2 = (1/(m-1))*((v_y)**2)

r = num / (den_1 + den_2)

from math import modf

return modf(r)[1]

r = get_r(s_xbar, s_ybar, n, m)

print('x_bar - y_bar:{}, s_w:{}, r:{}'.format(w_1, s_w, r))

# calculate t value

cl = 0.95

half_alpha = round((1 - cl)/2,3)

from scipy import stats

t = round(stats.t.ppf(1-half_alpha, r),3)

print('t:' + str(t))

x bar - y bar:1.24, s w:0.9955, r:16.0

t:2.12

Pr
(

(X − Y )− t(α
2
,r)sw ≤ (µx − µy) ≤ (X − Y ) + t(α

2
,r)sw

)
≈ 1− α

Pr
(

1.24− (2.12)(0.9955) ≤ (µx − µy) ≤ 1.24 + (2.12)(0.9955)
)
≈ 0.95

In[29]: cilow, cihigh = round((w_1 - t*s_w),4),round((w_1 + t*s_w),4)

print(cilow, cihigh)

-0.8705 3.3505

Pr(−0.87 ≤ (µx − µy) ≤ 3.35) ≈ 0.95
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Thus the 95% confidence intervals for the difference of sample means of given problem is $(-0.87,
3.35)

2.2.6 Difference between two proportions

Duncan is investigating if residents of a city support the construction of a new high school. He’s
curious about the difference of opinion between residents in the North and South parts of the city.
He obtained separate random samples of voters from each region. Here are the results:

Supports Construction? North South

Yes 54 77
No 66 63
Total 120 140

Duncan wants to use these results to construct a 90% confidence interval to estimate the differ-
ence in the proportion of residents in these regions who support the construction project (pS − pN ).
Assume that all of the conditions for inference have been met. Calculate 90% confidence interval
based on Duncan’s samples

Solution:
Conveniently the sample sizes are high, so we could assume normal approximations for sampling

distributions of sample proportions for both North and South parts of the city.
Given:

Let
YS
nS

= N
(
p1,

p1q1
n1

)
represent sampling distribution for South. Similarly,

YN
nN

= N
(
p2,

p2q2
n2

)
for North.

We have the test statistic as follows.

p̂S =
yS
nS

=
77

140
, q̂S =

yS
nS

= 1− 77

140

p̂N =
yN
nN

=
54

120
, q̂N = 1− yN

nN
= 1− 54

120

1− α = 0.90, α = 0.1,
α

2
= 0.05

In[12]: t_s = [77/140, 1-(77/140), 54/120, 1-(54/120)]

t_s = ['%0.3f' % e for e in t_s]

t_s = [float(i) for i in t_s]

[p_s, q_s, p_n, q_n] = t_s

print(p_s, q_s, p_n, q_n)

0.55 0.45 0.45 0.55

∴ p̂S = 0.55, q̂S = 0.45, p̂N = 0.45, p̂N = 0.55 Recalling 1.27, we need to find,

Pr

(
− zα

2
≤ (p̂S − p̂N )− (pS − pN )√

p̂S q̂S
nS

+ p̂N ˆqN
nN

≤ zα
2

)
≈ 1− α = 0.90

In[16]: diff = round(p_s - p_n,3)

n_s, n_n = 140,120

from math import sqrt

w_sd = round(sqrt((p_s*q_s/n_s) + (p_n*q_n/n_n)),3)

https://www.khanacademy.org/math/ap-statistics/two-sample-inference/two-sample-z-interval-proportions/v/calculating-two-sample-z-interval-confidence-interval-for-difference-of-proportions
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# get Z

cl = 0.90

from scipy import stats

alpha = 1 - cl

z = (-1)*round(stats.norm.ppf(alpha/2),3)

print(diff, w_sd, z)

0.1 0.062 1.645

Substituting, we get,

Pr
(
− 1.645 ≤ 0.1− (pS − pN )

0.062
≤ 1.645

)
≈ 0.90

Pr
(

(−1.645)0.062 ≤ 0.1− (pS − pN ) ≤ (1.645)0.062
)
≈ 0.90

Pr
(

0.1− (1.645)0.062 ≤ (pS − pN ) ≤ 0.1 + (1.645)0.062
)
≈ 0.90

In[18]: cilow, cihigh = round(diff - z*w_sd,3), round(diff + z*w_sd,3)

print(cilow, cihigh)

-0.002 0.202

Thus the 90% CI intervals for the difference between proportions are (−0.002, 0.202). That is,

Pr
(
− 0.002 ≤ (pS − pN ) ≤ 0.202

)
≈ 0.90

2.3 Useful Snippets

2.3.1 Python

Get t score
Could be useful, when you have significance level α and degrees of freedom df = n − 1, and

have to calculate corresponding t score

In[30]: def get_t(cl, n):

from scipy import stats

half_alpha = round((1 - cl)/2,3)

return round(stats.t.ppf(1-half_alpha, n-1),3)

cl = 0.95 # confidence level

n = 4 # sample size

print(get_t(cl, n))

3.182

Get Z score
Could be useful, when you have significance level α and have to calculate corresponding Z score.

Remember to always check if you need left tailed area or right tailed.
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In[31]: def get_z(cl):

#NOTE:returns right tailed area as that is mostly used in CI

from scipy import stats

alpha = round((1 - cl)/2,3)

return (-1)*round(stats.norm.ppf(alpha),3) # right tailing..

cl = 0.95

print(get_z(cl))

1.96

Z and T distribution
Plotting a z and t distribution.

In[32]: %matplotlib inline

from scipy.stats import t, norm

import numpy as np

import matplotlib.pyplot as plt

n = 3

df = n-1

fig,ax = plt.subplots(1,1)

x = np.linspace(t.ppf(0.01,df), t.ppf(0.99,df),100)

ax.plot(x, t.pdf(x,df), color='C0') # blue is t distribution

ax.plot(x, norm.pdf(x), color='C1') # red

plt.show()

2.3.2 Tikz in Ipython

Some parts of this book including this section are created using ipython notebooks and thus few
figures which needed to be constructed via tikz needed an extension. Below figures are created via
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tikz by using an ipython extension called tikzmagic, so the format is slightly different for preamble.
However, for tikz users, the essence could be easily captured.

For first time usage (or after reset and clear of notebook), always load tikz as below.

%load_ext tikzmagic

Also note, preamble is placed in a separate code cell above, because ipython needs magic
commands to start as first line in cells. Here, tikz execution needs a magic command in subsequent
cell.

Z distribution:
In[33]: preamble = '''

\pgfmathdeclarefunction{gauss}{3}{%

\pgfmathparse{1/(#3*sqrt(2*pi))*exp(-((#1-#2)^2)/(2*#3^2))}%

}

'''

In[34]: %%tikz -p pgfplots -x $preamble

% had to be this size to have a normal size in latex

\begin{axis}[

no markers,

domain=0:6,

samples=100,

ymin=0,

axis lines*=left,

xlabel=$x$,

ylabel=$f(x)$,

height=5cm,

width=12cm,

xtick=\empty,

ytick=\empty,

enlargelimits=false,

clip=false,

axis on top,

grid = major,

axis lines = middle

]

\def\mean{3}

\def\sd{1}

\def\cilow{\mean - 1.96*\sd}

\def\cihigh{\mean + 1.96*\sd}

\addplot [draw=none, fill=yellow!25, domain=\cilow:\cihigh] {gauss(x, \mean, \sd)}

\closedcycle;

\addplot [very thick,cyan!50!black] {gauss(x, 3, 1)};

\pgfmathsetmacro\valueA{gauss(1,\mean,\sd)}

\draw [gray] (axis cs:\cilow,0) -- (axis cs:\cilow,\valueA) (axis cs:\cihigh,0) --

(axis cs:\cihigh,\valueA);

\draw [yshift=0.3cm, latex-latex](axis cs:\cilow, 0) -- node [above] {Area = $0.95$}

(axis cs:\cihigh, 0);

\node[below] at (axis cs:\cilow, 0) {$\overline{X} - 1.96S$};

\node[below] at (axis cs:\mean, 0) {$\overline{X}$};

\node[below] at (axis cs:\cihigh, 0) {$\overline{X} + 1.96S$};

\node[below=0.75cm,text width=4cm] at (axis cs:\mean, 0){Sampling Distribution};

\end{axis}

https://github.com/mkrphys/ipython-tikzmagic
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t distribution:
In[35]: preamble='''

\pgfmathdeclarefunction{gamma}{1}{%

\pgfmathparse{2.506628274631*sqrt(1/#1)+ 0.20888568*(1/#1)^(1.5)+

0.00870357*(1/#1)^(2.5)- (174.2106599*(1/#1)^(3.5))/25920-

(715.6423511*(1/#1)^(4.5))/1244160)*exp((-ln(1/#1)-1)*#1}%

}

\pgfmathdeclarefunction{student}{2}{%

\pgfmathparse{gamma((#2+1)/2.)/(sqrt(#2*pi) *gamma(#2/2.))

*((1+(#1*#1)/#2)^(-(#2+1)/2.))}%

}

'''

In[36]: %%tikz -p pgfplots -x $preamble

\begin{axis}[

no markers,

domain=-6:6,

samples=100,

ymin=0,

axis lines*=left,

xlabel=$x$,

height=5cm,

width=12cm,

xtick=\empty,

ytick=\empty,

enlargelimits=false,

clip=false,

axis on top,

grid = major,

axis lines = middle,

y axis line style={draw opacity=0.25}

]

\def\mean{0}

\def\sd{1}

\def\df{3}

\def\cilow{-3.182}

\def\cihigh{3.182}

\addplot [draw=none, fill=yellow!25, domain=\cilow:\cihigh] {student(x, \df)}

\closedcycle;

\addplot [very thick,cyan!50!black] {student(x, \df)} node [pos=0.6, anchor=mid

west, xshift=2em, append after command={(\tikzlastnode.west) edge [thin, gray]

+(-2em,0)}] {$df=3$};;

%https://tex.stackexchange.com/questions/453059/pgfmathsetmacro-creates-dimensions-

too-large-for-t-distribution/453062

\addplot [ycomb, gray, no markers, samples at={\cilow, \cihigh}] {student(x, \df)};

\draw [yshift=0.2cm, latex-latex](axis cs:\cilow, 0) -- node [above] {Area = $0.95$}

(axis cs:\cihigh, 0);
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\node[below] at (axis cs:\cilow, 0) {\cilow};

\node[below] at (axis cs:\mean, 0) {0};

\node[below] at (axis cs:\cihigh, 0) {\cihigh};

\node[below=0.75cm,align=center, text width=10cm] at (axis cs:\mean, 0){Sampling

Distribution has $t$ distribution for low sample sizes};

\end{axis}
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Appendix

3.0.1 Difference between two Random Variables

Suppose we have two populations described by random variables X(µx, σ
2
x) and Y (µy, σ

2
y). We are

interested in the distribution of their differences W = X - Y. What would be µw, σ
2
w? We could

solve that using Expectations. This is true for any distributions X and Y have, as long as they are
independent to each other or X 6= Y .

µw = E[W ] = E[X − Y ] = E[X]− E[Y ] = µx − µy (3.1)

σ2w = V ar[W ] = E[W 2]− [E[W ]]2

= E[(X − Y )2]− [E[X − Y ]]2

= E[X2 + Y 2 − 2XY ]− (E[X]− E[Y ])2

= E[X2] + E[Y 2]− E[2XY ]−
{

(E[X])2 + (E[X])2 − 2E[X]E[Y ]
}

= E[X2] + E[Y 2]−�����2E[X][Y ]− (E[X])2 − (E[Y ])2 +������
2E[X]E[Y ]

= {E[X2]− (E[X])2}+ {E[Y 2]− (E[Y ])2}
= V ar[X] + V ar[Y ]

∴ σ2w = σ2x + σ2y (3.2)

43
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