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Chapter 1

Theory

1.1 CI Formula Evolution

1.1.1 Example 1: Uniform Random Variable with 100% CI
Initial Setup

Random Variable x having uniform probability density function f(z).

f(@)
L
2
Area=1
x
0—1) 0 0+1)
This simply means, the converge probability,
Pr@—-1<z<6+1)=1 (1.1)

That is, the probability that x could be within # + 1 is 1.

CI construction using Pivotal Quantity

In equation 1.1, by adding —@ to the inequalities, we get,

Pr(=04+0—-1< —-04+2x<-04+0+1)=1
Pr(-1<z-0<1)=1

Multiplying by —1, and adding x
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Pr(l>—z+6>-1)=1
Priz+1>0>x—1)
Priz—1<0<x+1)

1
1 (1.3)

Thus while x could take value only between 6 + 1 for given probability, Equation 1.3 states, 6
could also be only within x + 1 for same probability

Intuitive Proof

Suppose x takes a left extreme value as below within bounds 6 + 1.

f(z)
-
2
Area=1
dy) zo + 1
@
0o 8 0+

Then, we could already see, 0 is at zg + 1 still respecting the bounds x + 1.
Suppose x takes a right extreme value as below within bounds 6 + 1.

f(z)
I
2
Area=1
Tro — 1 i)
@
o-1 8 0ty

Then, we could already see, 6 is at xg — 1 still respecting the bounds = + 1.
Thus, while x could be only within 6 £ 1, it is also valid to say, 8 could vary only within x + 1.
Pri0—1<z<f0+1)=Pr(z—1<6<zx+1)=1 (1.4)

1.1.2 Example 1b: Uniform Random Variable with 90% CI
Initial Setup

Random Variable x having uniform probability density function f(z).
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f(x)

L

2

Area=0.9
x
(6 —0.9) 0 (0+40.9)
This simply means, the converge probability,
Pr(0—09<z<6+09)=0.9 (1.5)

That is, the probability that x could be within 8 £ 0.9 is 0.9 or 90%.

CI construction using Pivotal Quantity

In equation 5, by adding —8 to the inequalities, we get,

Pr(=0+60—-09<-60+2<-0+60+0.9)=0.9
Pr(-=09<z-6<0.9)=0.9

(1.6)
Multiplying by —1, and adding x
Pr(09>—-z+6>-0.9)=0.9
Pr(z+09>60>2-0.9)=0.9
Pr(zr—-09<6<2z+4+0.9) =0.9 (1.7)

Thus, while x could take value only between 6 4+ 0.9 for given probability 0.9, above equation
states, 6 could also be only within x £ 0.9 for same probability.

Intuitive Proof

Suppose x takes a left extreme value as below within bounds 6 £ 0.9.

f(x)

N

Area=0.9

X0 .ZC() +0.9
6-09) 6 (6409
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Then, we could already see, 6 is at zo + 0.9 still respecting the bounds x 4 0.9.
Simply put, when x is at xg = 6 — 0.9, then it automatically implies, 8 = x¢ + 0.9
Suppose z takes a right extreme value as below within bounds 6 =+ 1.

f(z)

N

Area=0.9

.ZCO —0.9 i)
(6 —0.9) 0 (60 +0.9)
Then, we could already see, 6 is at o — 0.9 still respecting the bounds x 4+ 0.9.

Thus, while z could be only within 6 4+ 0.9, it is also valid to say, 6 could vary only within
x£0.9.

Pr(0—09<z<60+09) =Pr(zr—09<6<zx+0.9)=09 (1.8)

1.1.3 Example 2: Uniform Random Variable with 100% CI
Initial Setup

Random Variable x having uniform probability density function

1 1 3
= — fi —0<zxr<-— 1.
f(x) g for 297x729 (1.9)
f(x)
L
0
Area=1
1 3 o
30 f 2t
This simply means, the converge probability,
1 3
Pr(§9 <z< 59) —1 (1.10)

That is, the probability that x could be within 6 + %9 is 1
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CI construction using Pivotal Quantity
Multiplying by 2 in the inequalities,
Pr(6<20<30) =1
Dividing by 6,..
Pr (1 < 2?1: < 3) ~1

Dividing by x and inversing the inequalities, and again multiplying by 2..

0 x
0 =
P ( > 7) _
"\*=5=3
Pr(2x2922§):1
which is same as
2
Pr(g gagm) —1 (1.11)

Intuitive Proof

Suppose z takes a left extreme value as below within bounds 6 £+ 3

f(z)

SR

Area=1

i) 2$0

D=
)

0
When z is at g = 3 then 0 = 2xg

Suppose x takes a right extreme value as below within bounds 6 + 7
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f(z)
L
0
Area=1
B 20
T ? 3 v
20 20
2

When z is at z¢g = %, then 6 =
2
Thus, while z could be only within 6 + g, it is also valid to say, 8 could vary only within
2
(3 2)

Pr(ﬂ—ggﬁgﬁ—i-g):Pr(%§0§2x>:1 (1.12)

1.1.4 Example 3: Normal Distribution with 95% CI

Initial Setup

Random Variable  having uniform probability density function

fo) = — e_%(%f (1.13)

Area = 0.95

l |
uw— 1.960 K i+ 1.960
This simply means, the converge probability,

Pr(p—1.960 <z < ju+ 1.960) = 0.95 (1.14)

That is, the probability that x could be within £ 1.960 is 0.95 or 95%
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Why 1.967

Let us standardize the distribution to standard normal distribution, Z =

1.960 —
When X — i+ 1.960, z = #1900 =1 4 o
g
When X = pu —1.960, Z = p= 1960 = 1 =-1.96
g

The transformed distribution would look like below.

\
—1.96

If we look at the Z table for Z = 1.96, we will find value as 0.975

Tabie entry.
Table entry for 2 is the area under the standard normal curve
L to the kel of 2.
H
z 00 -01 02 J03 .04 05 S0 07 .08 09

0.0 .5000 5040 5080 5120 5160 5199 |.5239| 5279 5319 5359
0.0 5398 5438 5478 5517 5557 .5596 |.5636| .5675 5714 5753
0.2 5793 5832 5871 5910 5548 5587 L6026 6064 6103 6141
03 6179 6217 6255 6293 6331 .6368 6406 6443 6480 6517
0.4 6554 6591 5628 6664 6700 6736 6772 | .BS03 6844 6879
05 6915 6950 6985 019  F054  F0BB 7123 | 7157 7190 724
0.6 757 7291 734 7357 FIE9 422|744 | 7486 7517 7549
07 7580 7611 7642 7673 7704 7734 L7764 7794 .
0.8 7881 7910 7939 7967 7995 8023 |.60G1| .BO78  .BIO6  .BI33
09 B159 8186 8212 8238 8264 .8289 8315 .B340 8365  .B3EY
1.0 B413 BAZE BaG1 8485 8508 8531 |.B554 | .BS77  .BS99 B621
11 BG43 8665 8686 8708 8729 8749 8770 6790 8810  .BB3O
1.2 B849 8869 8BBE  .8907 8525 8944 |B962| .BOSD  B9YT 9015
13 5032 9049 9066 9082 9099 9115 9131 9147 9162 9177
14 9192 9207 9222 9236 9251 9265 9279 9292 9306 9319
15 9332 9345 9357 9370 9382 9394 9406 9418 9429 9441
1.6 8452 63 44 9484 9495 9505 L9515 ) 8525 9535 5545
1.7 9554 9564 5573 9582 9591 9599 9608 9616 9625  .9633

K 9678 I 9699 9706

If we look at the Z table for Z = —1.96, we will find value as 0.025

X —p

g
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Tabde entry,
Table entry for 2 is the area under the standard normal curve
to the left of 2.
200 01 02 203 04 05 J06 07 08 09

-34 0003 0003 0003 0003 0003 0003 L0003 | .0003 0003  .0002
=33 0005 0005 0005 0004 0004 0004 L0004 | 0004 0004  .0003
=32 0007 0007 0006 0006 0006 0006 LOOOG | L0005 .000S  .0005
=31 0010 0009 0009 0009 .ODOE .000B L0008 | 0008 .0007  .0007
=30 0013 0013 0013 0012 0012 .00D1 ROOI1 | .0011 .O010  .0O10
=29 .0019 0018 0018 0017 0016 .0016 L0015 | .0015 .0014  .0014
=28 0026 0025 0024 0023 0023 0022 L0021 | .0021 .0O20  .0O19
=27 0035 0034 0033 0032 0031 0030 L0029 | .DO2B  .DO27  .0O26
-26 0047 0045 0044 0043 0041 0040 L0039 | L0038 0037  .0036
=25 0062 0050 0059 .0O57 0055 .0054 0052 | .0051 .0049  .0048
=24 0082 0O0BD 0078 0075 0073 0071 0069 | 0068  .DO&G 0E
=23 0107 0104 0102 0059 009 .0094 L0091 | .0089 .O0B7  .0084
=22 0139 0136 0132 0129 0125 0022 L0119 | .0116 .0113  .D110
=21 017 0174 0170 0166 0162 0158 L0154 | .01S0 0146  .0143
=20 0238 0222 0217 0212 0207 0202 0197 | 0192 .D1&8 0183

(F15 0287 0281 0274 0268 0262 .0256 0244 0239 0233

The area between 0.975 and 0.025 is 0.975 — 0.025 = 0.95 or 95%. Thus, the value 1.96 was
born. It depends on the area we are interested. Here, we were interested in 95% area, so we get
Z =41.96

Note The Z table might be left tailed as we just saw or also sometimes right tailed due to
symmetrical nature of the curve. This realization is important because when we generalize CI,
we will often take right tailed. I used the conventional left tailed table above just to state this
explicitly as undoubting readers may miss this point.

CI construction using Pivotal Quantity

From equation 1.14, adding —p on both sides of inequalities, we get,

Pr(—p+p—1.960 <z —p < —p+ p+ 1.960) = 0.95
Pr(—1.960 < x — u < 1.960) = 0.95

And then adding —z

Pr(—x—1.960 < —z+x —pu < —z+ 1.960) = 0.95
Pr(—x —1.960 < —pu < —z + 1.960) = 0.95

Multiplying by —1

Pr(z+1.960 > u >z — 1.960) = 0.95
Pr(x —1.960 < u <z + 1.960) = 0.95 (1.15)

Intuitive Proof

Suppose x takes left extreme value within bounds g + 1.960. That is, x¢ = p — 1.960 Then,
u=zo+ 1.960
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f(x)

Area = 0.95

_/on G0 F 1960 ~_ o

w—1.960 K w—+ 1.960

Similarly, when xg = p + 1.960 then directly we could derive, u = x¢g — 1.960
f(x)

Area = 0.95

_—/‘ .CII() —1.960 N

uw—1.960 H u+ 1.960

So, as xq varies from p — 1.960 to p+ 1.960, implicitly, p varies from x¢ + 1.960 to o — 1.960.
Thus,

Pr(p—1.960 <z < pu+1.960) = Pr(z —1.960 < u <z +1.960) = 0.95 (1.16)

1.2 CI for Sampling Distribution

1.2.1 95% CI as a Corollary

We already have seen, any sampling distribution for sample proportions or sample means, will
o

Vo

population standard deviation, and sample size respectively, when respective conditions' are met

as per Central Limit theorem (CLT). Note each z is a sample mean.
We thus have a normal distribution like below representing sampling distribution.

approach normal distribution, with X — g and S — where p,o0,n are population mean,

Area = 0.95

— r

X —1.96S X X +1.965

Inp > 10 and ng > 10 for sample proportions, n > 30 for sample means
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Then, using equation 1.16, we have,

Pr(X —1.96S <z < X +1.96S5) = Pr(z — 1.96S < X <z + 1.965) = 0.95

T y=095  (L17)

Pr(u— 1.96% <z<p+ 1.96%) = Pr(z—1.96-= < p <+ 196

vn vn
Thus, 95% CI for a Sampling distribution would be (a: + 1.96\/%7)

1.2.2 Generalized CI

As hinted in 1.1.4, we will use a right tailed Z table for generalization. We already saw, at 7Z =
-1.96, the area spanned would be 0.025. This could be written as

20.025 — —1.96

Substituting in 1.17, we get,

g g
P —196—=<pu< 1.96—) = 0.
r(x 9= <p<a+ 96\/5) 0.95

Pr(x + 20.025% <p<z-— Zomsi) =0.95

Vn
This is kind of counter intuitive. Additive term comes on the LHS. Though one would later
discover, 225 is negative, it could be better if this is not raising any confusion in first place. This
is why we use right tailed Z table.
In case of right tailed Z table as below, note, at Z = 1.96, the area spanned is 0.025. Thus we
could write it as

20.025 = 1.96

Mormal Curve Areas Aroa
Standard normal probability
in right-hand tail
(] T
Second decimal place of =
s 00 .01 02 1] (T} 05 Q06§ 07 08 09

0.0 5000 4960 4920 4SS0 AR40  A4S01 RATELQ 4T21 4681 4641
01 4602 4562 A4B3 443 04 RA3GA Y 4325 4286 A24T

0.2 4207 4168 A 4052 4013 R39TAR 3056 I L)
0.3 3821 3783 AT07 3669 3632 RA504 )8 3557 MBS
04 3446 3400 3360 3300 3264 32230 3192 3121

L2877 2843 2810 2776
L2546 2514 2483 2451
L2236 2206 2177 2148
194008 1922 1804 1867
16858 1660 1635 1611

2081 206
2643 2611
2327 2296
2033 2005
AT62 1T36

0.5 G085 5050
0.6 2743 2709
0.7 2420 2380
0.8 2119 2000
049 1841 1814

L0 L1587 L1562 1539 1515 (1492 1469 Q1446 1423 1401 1379
L1 1357 .1335 .1314 .1292 .1271 .1251 Q12304 .1210 .1190 .1170
1.2 1151 1131 1112 10493 1075 (1056 Q103§ 1020 1003 0985
L3 0968 0051 0934 0918 0901 0885 ROKGHE 0853 0838 0823
L4 0808 0793 0778 0764 0749 0735 QOTILE 0703 0694 0681

L5 0668 0655 0643 0630 0618 0606 RO594§ 0582 0571 0559
L6 0548 0537 0526 0516 0505 0495 RO4SSE TS 0465 (M55
LY 0446 0436 0427 A1 409 d0l RO392 8 0384 0375 0367
3 (L350 30336 0320 32, 148 0307 0301 0294
244 02300233
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Substituting in 1.17, we get,

g g
P —1.96—=<u< 1.96—) = 0.95
r(z N p<x+ \/ﬁ)

Pr(z — 20.025% <pu<z+ 20.025%) =0.95
This is good.
Let « be the desired significance level (which we will learn in hypothesis testing). In our case,
it is 5% or a = 0.05. Thus, 1 —a = 0.95 and § = 0.025
We could then rewrite above equation as,

Pr(x—2a1<,u<a:+z

2vn 2Vn

This is the generalized CI equation where 1 — « is called the confidence coefficient and zg
is called the critical value

T y=1-a (1.18)

Note Confidence Interval CI indicates not an interval, where population mean is contained 95%
of time, but, if one continues to take many such samples and CI for each sample, then 95% of
those Cls would contain population mean. We do not know what those Cls are unless we know the
population mean and take many such sample sets and their CIs. Once we have taken enough such
sample sets (each sample set of size n) calculating CI each time, we could expect that 95% of those
CIs have population mean.

1.2.3 When o is known

In 1.18, we have population standard deviation ¢ in both end points of the inequalities. Often
population parameters are not known in reality. So we have two cases: One when you are lucky
enough to known o and another, you do not know. When you do know, still there are some more
parts in play. For example, the more the samples are taken from population, the closer the resulting
sampling distribution is to Normal (or Normal approximation is becoming better), so when do you
say, sample size n is good enough? This depends on various conditions.

1. If we sample from population whose distribution is itself normal, then even small sample size
n > 5 would suffice because our sampling distribution easily approximates to Normal. Our
current CI equation holds good.

2. If we sample from population whose distribution is not normal but symmetric, unimodal and
of the continuous type, then as per Central limit theorem (CLT), sample size n > 30 should
be adequate generally as this would result in sampling distribution becoming almost normal
so our equation could still be approximately good. That is,

Pr($72ai<u<aj+z

FVn s

3. If distribution is non normal and also highly skewed, even above approximation would not
work. In that case, it would be safer to use certain nonparametric methods for finding a CI
for the median of the distribution.

“Jxl-a (1.19)
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1.2.4 When o is not known

This is often the case in reality. In this case, depending on certain conditions like above, we could
use student’s ¢ distribution?. The ¢ distribution looks like normal, except the tails are bigger, and
also depends on degrees of freedom (which usually is n — 1). The proof is exhaustive, so we will
take at face value for now (and prove in future if time permits)

1. If we sample from population whose distribution is itself normal, and if sample size n < 30,
then our CI equation would be,
s s

\/77, < H < -’If‘"t%,(n_])%

where ta (n-1) is the t value for probability area for degrees of freedom (n — 1) from
corresponding right tailed ¢ table.

Pr(x — t%,(n—l) ) =1—-« (1.20)

a
2

2. If we sample from population whose distribution is itself normal, and if sample size n > 30,
then our t distribution would already be almost equal to normal (and resulting sampling
distribution would be normal) so we could use as below,

S s
Prizr—ze—=<pu<zrt+ze—)=1—« 1.21
(@2 Jm<p<otzo) (1.21)
3. If we sample from population whose distribution is not normal but symmetric, unimodal and
of the continuous type, and sample size n < 30, we get approximate CI as below.

s s

PT’(CE — t%’(nil)ﬁ <upu<lz+ t%,(nfl)%) ~1—« (1.22)

4. If distribution is non normal and also highly skewed, even above approximation would not

work. In that case, it would be safer to use certain nonparametric methods for finding a CI
for the median of the distribution.

1.2.5 CI for difference between two means

This section is heavily inspired by Robert et al. [2], and I have tried to articulate in my style
to my understanding. Suppose that we are interested in comparing two approximately normal
sampling distributions described by random variables X = N(uz, 02) and Y = N (ug, 0%), created
from population distributions described by random variables X (i, 02) and Y (1, JZ). Note that
X represents collection of sample means from sampled sets sampled from X and similarly for Y.
Since both X and Y are normally distributed, and assuming both are independent to each other,
the distribution W = X —Y would be again a normal distribution W (p1y, 02)), where i,y = piz — iz

and 02 = 02 + O’% as proved in 3.0.1

fw)

- Area=1—« N

l l w
P — 220 Haw M + Za0oy

2http://pages.wustl.edu/montgomery/articles/2757


http://pages.wustl.edu/montgomery/articles/2757
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Since W is a normal distribution now, we have the confidence interval as follows directly fol-
lowing equation 1.14

Pr(u—z%agxgu—i—z%a):l—a
Pr(py —zaoy < W <y + zaoy) =1 —«
Pr(—zaoy <W — py < zaoy) =1—«
W —

Pr(—za < ““’g a)=1—-«
2 O'w 2

W —

Pr(—ze < Hu <za)=1-«
2 Jw 2

X-Y)— (uz —
0%+0%

X —-Y) — (uz — g

Pr —z%g( ) (“Z “y)gz% —1-a (1.23)

% 4%
n m

W — Ly

where Z = would be the "standardized” normal distribution N(0,1), n and m are

Ow
sample set sizes of X (uz,0,) and Y (py,0y) respectively.

Assuming ¢ unknown

Most of the times in reality, the population paramters are not known. So when the sample sizes
n, m are sufficiently large, we could use sample SDs (sz, sy) in place of (0, 0y).

2 2
o
n m

X-Y)— (uz— iy
Pr(_%g( )~ (= “ykz%)m_a

And also rewriting, to find CI for (uz — py), we get,

Pr((Y—V) —zas0 < (4p —py) < (X ~7) + z%sw) ~1—a (1.24)

2 2
[s2 | s>
where, s, = \/ -F + ;%, and n, m are large.

When n,m are small

We would then use student’s ¢ distribution as suggested by Welch and Aspin. The proof is
currently beyond the scope so we take it at face value.

Pr((y—?) — (s 5 < (7 — i) < (X~ V) + t(%ﬂ«)sw) ~1—a (1.25)

where r is degrees of freedom. Since two distributions are involved, calculating r is complicated.
It is given as follows:
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T =

(1.26)

2
71
n

52

7:0

n
_1
n—1

Protection when o, = o,
Since we do not know o, 0y, it might be that they are also equal. If they happen to be equal, r
could be proven as below.

r=Mmn-1)+m-1)=n+m-—2

The equation 1.26 protects in the sense that, the r value from that is lesser than above equation,
so t value is higher, or t distribution of wider variance assumed, thus being conservative. Some
texts simply also take r = min(n — 1,m — 1) as conservative approach.

A visual summary

Start

no

N _ )25
Ow =\ 7+ ow =\ 77+
PR4 Welch’s t
Use t
- Use ¢
(52 5% )2
7113_5'_7
n m
2 i r=n+m-—2
e (FP2+ e (32)?
2) 2 Uw =
S S 2 2
n m Sp n+m—2
— 1, 1
Sp - n + m




CHAPTER 1. THEORY 16

1.2.6 CI for difference between two proportions

Suppose that we are interested in comparing two approximately normal sampling distributions

Y] Y.

described by random variables LonN (pl, @) nd 2 =N ( @>, created from population
niy ni n9 ng

distributions which are Bernoulli distributions.

Y;
Note that Y7 represents the sum of successes in a sample set, and thus -1 represents sample
n

Y;

proportions. For example, for any kth sample set of —1, we calculate sample proportion statistic,
ny

Y, 12

L > Y, where Yy, is ith sample in kth sample set of sampling distribution described by

n1 ni=1

1 e 2
—. Similarly for —
n

1 2
We could then rewrite 1.23 as below

ﬁ_Yz
Pr(—z g("l ) o p2)<z>:1—a

o3
/P1q1 | P2q2 2
n1+n2
Y1 Y,

In case you are Wonderlng about the parameters inside, say W = — — — then
ni n2

Hw = Hyy /ng — :uyg/ng = — P2
2 _ _ p1q1 p2gq2 . /P1Q1 P2q2
Uw—ayl/n1+ y2/n2 + no ..O-u) + no

Assuming ¢ unknown

Most of the times in reality, the population paramters are not known. So when the sample sizes
n,m are sufficiently large, we could use sample statistics (24, 2222) in place of (2t P282). This
results in further approximation of our confidence intervals. Thus when a sample is observed, we
have statistics
- Y1 Y1 . Y2 Y2
p1=— ;QI—I—*;ZD n:q2_1_77

ny 2 2
Thus we could rewrlte further as,

PT(—z cPimp) o) (1.27)

a a)%l—a
> > — — =22

/P1g1 | P2q2

n1+n2

When n, m are small

Currently I do not have an answer for this question and could not find online. Raised a ticket(?!)
here


https://stats.stackexchange.com/questions/369780/what-formula-for-confidence-intervals-for-difference-in-proportions-when-sample

Chapter 2

Examples

2.1 Deep Examples

2.1.1 Confidence Intervals for Sampling Proportions
Create Population

Let us create a population of 10000 balls, with 60% yellow balls. Programmatically, our population
contains 1s and 0Os, 1 indicating yellow.

In[1]: Ymatplotlib inline
import matplotlib.pyplot as plt
from SDSPSM import get_metrics, drawBarGraph
from ci_helpers import create_bernoulli_population

T = 4000 # total size of population
p=20.6 # 607 has yellow balls

# create population
population, population_freq = create_bernoulli_population(T,p)

# population metrics
mu, var, sigma = get_metrics(population)

# wvisualize

fig, (axl) = plt.subplots(l,1, figsize=(5,3))
drawBarGraph(population_freq, axl, [T, mu, var, sigmal, 'Population
Distribution', 'Gumballs', 'Counts’',xmin=0)

plt.show()

17
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Population Distribution

T= 4000, u= 0.6, 0°=0.24 0=0.4899
2500 -

2000 -

1500 -

Counts

1000 -

500 -

Gumballs

Deriving and visualizing the probability Mass function (the intermediate density function, where
total area of bars will be 1, is just for fitting normal continous approximation later)

In[2]: from ci_helpers import mini_plot_SDSP

fig, (axl,ax2,ax3) = plt.subplots(l,3,figsize=(15,4))
mini_plot_SDSP(population, axl,ax2,ax3, norm_off=True)

plt.show()
Distribution Density PMF
2500 -
6 W 0.6
ox: 0]
2000 A 51 0.5 A
1500 | 44 0.4
31 0.3 A
1000
21 0.2 A
500 -
11 01 A
0- T T T T 0- T T T T ] T T T T
0.0 0z 04 06 08 10 00 02 04 0.6 08 10 00 02 04 06 08 10

Sampling from the Population

Let us sample from population, N no of times, each time with sample set of size n. If np > 30
and ng > 30, the resulting sampling distribution should be approximately normal. Remember, for
Population described by random variable Y, we describe the sampling distribution by
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= 1 n
for any sample set k, sample mean is Y = — Z Yii
s

—_—

Random Variable p = y = ﬁ, ?;, Y- Yy

(2.1)
pp = p(Y)
o5 = 0'(?)
where the hat " indicates the statistical outcome. And statistically by CLT,
pp~0.6=p=p
(2.2)

0.4898 o p(1—p)

057~ 0.0693 ~% ——— = — =
P V50 W/ n

Note we have sampled WITH REPLACEMENT, so the samples are independent. If you
sample without replacement, you need to factor in FPC (finite population correction)
for each sample set’s SD.

In[3]: from ci_helpers import sample_with_CI
from random import seed

N = 100
n = 50
#seed (0)

# sample from population
Y_mean_list, CI_list = sample_with_CI(N, n, population, sigma=sigma, mode='z')

# sample metrics
mu, var, sigma = get_metrics(Y_mean_list)

# wvisualize
fig, (axl,ax2,ax3) = plt.subplots(l,3,figsize=(15,4))
mini_plot_SDSP(Y_mean_list,ax1,ax2,ax3,width=0.05, norm_off=True)

from IPython.display import display, Math
display(Math(r'\mu_{{\hat{{p}}}}:{} \ \ \ \ \sigma_{{\hat{{p}}}}:{}'.format(mu, sigma)))

pp - 0.6026 o5 0.0624
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Distribution Density PMF

10 e 0.6026
o 00624 | 0167

0.14

012 A

0.10

0.08

0.06 q

0.04
0.02

0- 0- 0.00 -
045 050 055 060 065 070 075 045 050 055 060 065 070 075 040 045 050 055 060 065 070 075

When o is known

For each of above sample set of size 'n’, let us calculate confidence interval using population SD
o as below. 1.96 is from Z tranformation for 95% confidence interval, like we saw earlier in our
theoretical section.

g
CI=Y + 196 (2.3)

In[4]: from ci_helpers import plot_ci_accuracy_1
fig, ax = plt.subplots(l,1, figsize=(20,5))

plot_ci_accuracy_1(ax, CI_list, mu)
plt.show()

CI containing pop.mean:96.0%

09

08

ymil
|

03

01234567 8 9101112131415161 718192021 2220425262 7282930313233 34353637 38394041424 3444546474849 50615 0717 4 T 334

As expected we observe that out of all ClIs above, 95% of them or above contain population
mean.
When ¢ is not known

For each sample mean X} calculated, the confidence interval is calculated as below. Note, the
constant value ¢, depends on degrees of freedom (n-1).
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Sk
I=Y +t,1—= 2.4
C 1\/5 (2.4)

Hope you noted. This time, for each sample mean, we also calculate unbiased sample variable
of that set (that is, divided by n-1), and use that for calculating M. We sample again, because,
for each sample, this time, we calculate CI using t distribution.

t value for 95% CI:

Degrees of Freedom df = n — 1. For 95% confidence level, the confidence coefficient, 1 — a =
1—0.05=0.95.

To calculate ¢ in python, we simply need to pass, (1 —a, df). A sample calculation shown below
for sample size n = 10

In[5]: from scipy import stats
print(stats.t.ppf(1-0.025, 10-1))

2.2621571627409915

Now to our sampling distribution. Note, we are getting an approximate normal distribution.

In[6]: from ci_helpers import sample_with_CI

N = 100
n = 50
#seed (0)

# sample from population, this time in t mode,
# so CI intervals are calculated with t value 2.093
Y_mean_list, CI_list = sample_with CI(N, n, population, sigma=sigma, mode='t')

# sample metrics
mu, var, sigma = get_metrics(Y_mean_list)

# visualize
fig, (axl,ax2,ax3) = plt.subplots(l,3,figsize=(15,4))
mini_plot_SDSP(Y_mean_list,ax1,ax2,ax3,width=0.05, norm_off=True)

from IPython.display import display, Math
display (Math(r'\mu_{{\hat{{p}}}}:{} \ \ \ \ \sigma_{{\hat{{p}}}}:{}'.format(mu, sigma)))

plt.show()

pp 2 0.5976  op 2 0.0854

Distribution Density

e 0.5976
5 o.: 0.0854
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In[7]: from ci_helpers import plot_ci_accuracy_1
fig, ax = plt.subplots(l,1, figsize=(20,5))
plot_ci_accuracy_1(ax, CI_list, mu)

plt.show()

CI containing pop.mean:93.0%

012345678 9101112131415161718192021 2203425262 38304041424344454547484/ 1 7172737475767TT579808182838485868
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Generally we should get more than 95% as above. Above result just means, if we take a sampling
size, and calculate CI, and do that 100 times, about 95 times our CI would contain population mean,
and our result gave 97 times. We could expect at least 95% most of the time. But can we get any
idea, how that "success” of getting population mean in our CI, 95% of time, depends on sample
size? We get it, greater the sample size, better, but how it would be? Let us take our simulation

to next scale as below, trying with various experiment and sample sizes.

Digging deeper 1

What if I use Z distribution and unbiased sample SD even for CI? What happens when I use t

distribution but population SD for CI? We will find out what happens in such cases below.

Environment:

Population size T, fixed

Sample size n, varied

Experiment size N, varied

Sampling with or without replacement, varied.
Applied methods:

7Z distribution and population SD

7 distribution and unbiased sample SD

T distribution and population SD

T distribution and unbiased sample SD

Ll e

W o=

Note, in case of sampling without replacement, each sample SD is corrected with FPC (Finite

Population Correction)

In[8]: from ci_helpers import plot_summary

max_sample_size = int(T/4) # 25/ of total population
N_list = range(5,500,20)
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# different sample sizes

range (5,max_sample_size,50)

n_list

plot_summary(population, N_list, n_list)

Sampling Without Replacement
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Note that, as per color gradient used, lighter the dots, nearer they are to 95%. And if green
they are above 95%. And if pink, they are below 95%. So more the green dots or lighter dots, the
better, the CI performance.

1.

5.

Compared to graphs using sample SDs on right hand side, the graphs using population SDs
on left hand side, has more dots that are green and lighter indicating better CI performance
on LHS. This is especially very pronounced, when sample sizes are small (observe dark dots
at n = 10). LHS almost always have green dots at n = 10 while RHS has mostly pinky dots.

. For a common SD usage, there is not much a difference between using Z or t distribution

when n > 30 . For eg, compare figures 01 and 11 both using population SD. Or compare 02
and 12 both using sample SD.

. Comparing figures 01 and 11 at n = 10 we observe, figure 11 performs better (more darker

green dots). So when you know o, and if n < 30 using Z distribution is better.

. Comparing figures 02 and 12 at n = 10 we observe, figure 12 performs better (lighter pink

dots). So when you do not know o and if n < 30, using T distribution with unbiased sample
SD is better.
Similar observation also applies to sampling with replacement.

Though the limit 30 is not obvious from above graphs, this number has been arrived at by
statisticians after extensive research

The CI for proportions have been always blotchy. Though above formula are straight forward,
they have been proven ineffective, effectively by Brown et al. [1]. When you use CI for
proportions problem in a practical scenario do use the alternatives provided there. In a
nutshell, for smaller sizes, n < 40, Wilson or the equal-tailedJeffreys prior interval are
recommended. For larger n, the Wilson, the Jeffreys andthe Agresti—-Coull intervals are all
comparable, and the Agresti—Coull interval is the simplest to present.

2.1.2 Confidence Intervals for Sample Means

Create Population

Let Y be the random variable indicating temperature over a distribution of certain values.
If limiting values are say, 0 deg C to 40 deg C, our population would thus look like this:
[23,13,35,50,10,2,5,0,33,---,21] Unlike Sample proportions,we do not know or designate any
proportion of temperatures in this example, but we know the mean and variance by simply calcu-
lating all values in the distribution. These would be our population parameters.

Population mean p = p,

Population variance 0° = o

2 2
Y

In[9]: ’matplotlib inline

from math import floor

import matplotlib.pyplot as plt

from random import random, seed, shuffle

from SDSPSM import get_metrics, drawBarGraph, getPopulationStatistics
from ci_helpers import createRandomPopulation

seed(0)

popMin = 1 # Min population
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Counts

popMax = 40 # Maz population
freqMax = 200 # freq of any set of population (for eg, mo of occurances of temperatures
at 25 deg C)

population, population_freq = createRandomPopulation(popMax - popMin + 1, fregMax)
N, mu, var, sigma = getPopulationStatistics(population_freq, popMin)

#visualize

fig, (axl) = plt.subplots(l,1, figsize=(16,3))
drawBarGraph(population_freq, axl, [N, mu, var, sigmal, 'Population
Distribution', 'Temperature', 'Counts')

plt.show()

Population Distribution
T= 4773, pu= 20.65, 0?=128.21 0=11.32
200 -

150 -
100 -
N H H H H H H
1 2 3 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 33 39 40 41 42
Temperature

Let us visualize the density function and PMF as usual.

In[10]:

from ci_helpers import mini_plot_SDSM
fig, (axl,ax2,ax3) = plt.subplots(l,3,figsize=(15,4))

mini_plot_SDSM(population, axl, ax2, ax3, popMax, width=1)
plt.show()

Distribution Density PMF
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0.000 -

Sampling from the Population

Let us sample from above population, N no of times, each time with sample set of size n. If n > 30,
the resulting sampling distribution should be approximately normal (always if population itself was
normally distributed)

Remember, for Population described by random variable Y, we describe the sampling distribu-
tion of sample means by
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py = u(Y)
(2.5)
oy = a(?)
where the indicates the statistical outcome. And statistically by CLT,
py =194~ 20=p
(2.6)

11.32
oy R 12r —— = g

NGO

Y is called the sample means which is a random variable.

In[11]: from ci_helpers import sample_with_CI
from random import seed

N = 100
n = 50
#seed (0)

# sample from population
Y_mean_list, CI_list = sample_with_CI(N, n, population, sigma=sigma, mode='z')

# sample metrics
mu, var, sigma = get_metrics(Y_mean_list)

# wvisualize
fig, (axl,ax2,ax3) = plt.subplots(l,3,figsize=(15,4))
mini_plot_SDSM(Y_mean_list, axl, ax2, ax3, popMax, width=0.1)

from IPython.display import display, Math
display (Math (r'\mu_{{\hat{{p}}}}:{} \ \ \ \ \sigma_{{\hat{{p}}}}:{}'.format(mu, sigma)))

pp s 19.5912 o, 1 1.5865

Distribution Density PMF
0.030 4

0.025 4

0.020 4

0.015 4

0.010

0.005 4

0.000 -

Ok I get it, the resulting distribution and density functions look abnormal (ugly, slightly
normal). Try increasing experiment size N, and you will see much better approximation
of normal distribution. We had to stick with N=100 because we have to see how CI
from each sample mean performs, so bear with me here.
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When o is known

27

For each of above sample set of size 'n’, let us calculate confidence interval using population SD
o as below. 1.96 is from Z tranformation for 95% confidence interval, like we saw earlier in our

theoretical section.

o
Cl=Y +£1.96—
NG

In[12]: from ci_helpers import plot_ci_accuracy_1

fig, ax = plt.subplots(l,1, figsize=(20,5))

plot_ci_accuracy_1(ax, CI_list, mu)
plt.show()

CI containing pop.mean:95.0%

07T172737475767T

01234567 8 910112131415161 718192021 2222425262 7282930313233 3435363 738394041424 344454647 484

When o is not known

When we do not know population SD

(2.7)

Just like earlier, for each sample mean X}, calculated, the confidence interval is calculated as
below. Note, the constant value ¢,_; depends on degrees of freedom (n-1).

Sk

Cl=Y +t,_

In[13]: from ci_helpers import sample_with_CI

N = 100
n = 50
#seed (0)

# sample from population, this time in t mode,
# so CI intervals are calculated with t value 2.093
Y_mean_list, CI_list

# sample metrics
mu, var, sigma = get_metrics(Y_mean_list)

# wvisualize
fig, (axl,ax2,ax3) = plt.subplots(l,3,figsize=(15,4))

sample_with_CI(N, n, population, sigma=sigma, mode='t')

(2.8)
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mini_plot_SDSM(Y_mean_list, axl, ax2, ax3, popMax, width=0.1)

from IPython.display import display, Math
display (Math(r'\mu_{{\hat{{p}}}}:{} \ \ \ \ \sigma_{{\hat{{p}}}}:{}'.format(mu, sigma)))

plt.show()

pp 2 19.6824 o5 : 1.5962

Distribution Density PMF
0.030 4

0.025 1

24

In[14]: from ci_helpers import plot_ci_accuracy_1
fig, ax = plt.subplots(l,1, figsize=(20,5))

plot_ci_accuracy_1(ax, CI_list, mu)
plt.show()

CI containing pop.mean:97.0%

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
01234567 8 9101112131415161 718192021 22232425062 7262930313233 34353637 3839404 142434445464 T 484¢ 07T172737475767T 04T I

Digging deeper 2

What if I use Z distribution and unbiased sample SD even for CI? What happens when I use t

distribution but population SD for CI? We will find out what happens in such cases below.
Environment:

1. Population size T, fixed

2. Sample size n, varied
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w

. Experiment size N, varied
. Sampling with or without replacement, varied.
Applied methods:
. Z distribution and population SD
. 7 distribution and unbiased sample SD
. T distribution and population SD
. T distribution and unbiased sample SD
Note, in case of sampling without replacement, each sample SD is corrected with FPC (Finite
Population Correction)

S

=W N

In[15] : max_sample_size = int(T/4) # 25 of total population
N_list = range(5,500,20)
n_list = range(5,max_sample_size,50) # different sample sizes

plot_summary(population, N_list, n_list)



30

CHAPTER 2. EXAMPLES

Sampling Without Replacement

Fig 01: Using Z distribution and population SD
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Fig 02: Using Z distribution and unbiased sample SD
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Note that, as per color gradient used, lighter the dots, nearer they are to 95%. And if green
they are above 95%. And if pink, they are below 95%. So more the green dots or lighter dots, the

better, the CI performance.



CHAPTER 2. EXAMPLES 31

1. Compared to graphs using sample SDs on right hand side, the graphs using population SDs
on left hand side, has more dots that are green and lighter indicating better CI performance
on LHS. This is especially very pronounced, when sample sizes are small (observe dark dots
at n = 10). LHS almost always have green dots at n = 10 while RHS has mostly pinky dots.

2. For a common SD usage, there is not much a difference between using Z or t distribution
when n > 30 . For eg, compare figures 01 and 11 both using population SD. Or compare 02
and 12 both using sample SD.

3. Comparing figures 01 and 11 at n = 10 we observe, figure 11 performs better (more darker
green dots). So when you know o, and if n < 30 using Z distribution is better.

4. Comparing figures 02 and 12 at n = 10 we observe, figure 12 performs better (lighter pink
dots). So when you do not know o and if n < 30, using T distribution with unbiased sample
SD is better.

5. Similar observation also applies to sampling with replacement.

Though the limit 30 is not obvious from above graphs, this number has been arrived at by
statisticians after extensive research.

Yes, the inferences are same as Section 2.1.1 except that the differences are much more clearer
in this case. For eg, compare figures 02 and 12 at n = 10. It is very clear now, why figure 12 (using
t distribution) is far better at lower sample sizes.

2.2 Shallow Examples

2.2.1 ¢ Known, Population Normal, Low Sample Size

Let X equal the length of life of a 60-watt light bulb marketed by a certain manufacturer. Assume
that the distribution of X is N(u,1296). If a random sample of n = 27 bulbs is tested until they
burn out, yielding a sample mean of © = 1478 hours, find 95% confidence interval for .
Solution: Here, its given that the population is Normal and also its population SD ¢. So we
could use equation 1.18 right away. Given
0% =1296 . 0 = 36,
x=1478, 1 — a = 0.95,
Z% = 20.025 = 1.96, n =27 > 5
Though sample size is < 30, the population distribution is given as normal already. Thus, our
sampling distribution would still be a normal distribution as below with 95% confidence interval
area.

The tikzmagic extension is already loaded. To reload it, use:
%reload_ext tikzmagic

fix)

Area = 0,95

X - 1.965 X X + 1968

Sampling Distribution
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We already know, in this sampling distribution, the mean X — px and SD S — \F Thus as
n

we have already derived earlier,

Pr(X—1965‘<:c0<X—|—1965

)=1
Pr(x0—1965<X<x0+1965)
)=1

Pr(m0—1967<u<x0+196 —

36
— Pr(1478 1962 < pu < 1478 + 1.96

V27

Pr<1478 — 1358 < 1 < 1478 + 13.58) =0.95

) —0.95

Pr<1464.42 <u< 1491.58) —0.95

Thus the 95% CI intervals are [1464.42,1491.58]. This does not mean, g is inside this interval
95% of the time. But simply, if we are to take many such samples and their ClIs, 95% of those Cls
would contain . We do not know what those Cls would be because we do not know the real u.

2.2.2 ¢ Known, Population not Normal, High Sample Size

The operations manager of a large production plant would like to estimate the mean amount of
time a worker takes to assemble a new electronic component. Assume that the standard deviation
of this assembly time is 3.6 minutes. After observing 120 workers assembling similar devices, the
manager noticed that their average time was 16.2 minutes. Construct a 92% confidence interval
for the mean assembly time.

Solution:

Given n = 120 which is > 30. The measurement in population is mean amount of time which is
continuous. Due to CLT, the resulting sampling distribution of sample means from all sample sets of
size n = 120 would result in a normal continuous distribution. Since population distribution is not
normal (at least not given specifically), we could expect our confidence interval to be approximate
only. Population SD ¢ is given as known which is 3.6 minutes. The sample mean of sample set is
16.2 minutes, thus z = 16.2

Summarizing,

z=16.2,n=120,0 = 3.6
l—a=092,a= 0.08,% —0.04

Since resulting sampling distribution is normal,we could use Z distribution. Remember, we use
right tailed Z table here. Recall 1.2.2. Using this table, we get

% 2’004:175


https://www.utdallas.edu/~mbaron/3341/Practice12.pdf
http://www2.stat.duke.edu/~rcs46/lectures_2015/14-bayes1/z-table.pdf
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Using 1.19,

3.6
Pr(16.2 17522 <

V120 ~
Pr<16.2 0575 < u<16.2+ 0.575) ~ 0.92

Pr<15.625 <u< 16.775) ~ 0.92

Thus the 92% confidence intervals for given sample set is [15.625,16.775]

2.2.3 o Unknown, Population Normal, Low Sample Size

To assess the accuracy of a laboratory scale, a standard weight that is known to weigh 1 gram is
repeatedly weighed 4 times. The resulting measurements (in grams) are: 0.95, 1.02, 1.01, 0.98.
Assume that the weighings by the scale when the true weight is 1 gram are normally distributed
with mean u. Use these data to compute a 95% confidence interval for
Solution:
The population is given as normally distributed with ¢ unknown. Due to low sample size
n = 4 < 30, the resultant sampling distribution would be of student’s ¢ distribution, than normal,
so we need to use that.
Parameters of the sample set:
In[22]: x = [0.95, 1.02, 1.01, 0.98]
def get_metrics(x):
from math import sqrt
n = len(x) # sample size
x_bar = sum(x)/n # unbiased sample mean
var = sum( [(x_i - x_bar)**2 for x_i in x] )/(n-1)

s = round(sqrt(var),3) # unbiased sample SD
return n, x_bar, var, s

n,x_bar,_,s = get_metrics(x)
print(‘'n:{} =x_bar:{} s:{}'.format(n,x_bar,s))

n:4 xbar:0.99 s:0.032

Summarizing,

n=4, =099, s=0.032, 1 —a=0.95

te (n-1) =toos 5 ="10.0253

Using right tailed t table, tg 0253 = 3.182

If we continued taking sample sets of this size n = 4, we would end up getting a sampling
distribution that has student’s t distribution as below.

Area 0.95

-3.182 0 3.182

Sampling Distribution has ¢ distribution for low sample sizes


https://www.utdallas.edu/~mbaron/3341/Practice12.pdf
http://pages.stat.wisc.edu/~ifischer/Intro_Stat/Lecture_Notes/APPENDIX/A5._Statistical_Tables/A5.2_-_t-distribution.pdf
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Thus, using 1.20,

S S
P’l“(l’ — t%’(n_l)ﬁ <p<z+ t%’(n_l)ﬁ) =1—-«
0.032 0.032
Pr (099 — t(0_02573) \/LI S 1% S 0.99 + t(0.025’3)w> =0.95
0.032 0.032
Pr (0.99 C 318228 < 1< 0.99 + 3.182—) —0.95
V4 V4

In[25]: def get_CI(x_bar, zrt, s, n):
from math import sqrt
m = zrtx(s/(sqrt(n)))
return [x_bar-m,x_bar+m]

t = 3.182
print(get_CI(x_bar, t, s, n))

[0.939088, 1.040912]

.. the 95% CI in our case are,

Pr (0.94 <u< 1.04) —0.95

2.2.4 o Unknown, Population not Normal, High Sample Size

34

In order to ensure efficient usage of a server, it is mecessary to estimate the mean number of
concurrent users. According to records, the sample mean and sample standard deviation of number
of concurrent users at 100 randomly selected times is 37.7 and 9.2, respectively. Construct a 90%

confidence interval for the mean number of concurrent users.
Solution

The measurement at hand is mean number of concurrent users. This is a continuous random
variable. Irrespective of population distribution, if sample size is large enough, due to CLT, even-
tually the sampling distribution formed will be normal. Here n = 100 > 30, so we would at least

approximately could get good enough CI with 90% confidence level as asked.
Summarizing,
n =100, x =37.7, s = 9.2

l1-a=09, a=01, §=0.05

This time, we shall use code to find the right tailed z area,..

In[26]: def get_z(cl):
from scipy import stats
alpha = round((1 - ¢1)/2,3)
return (-1)*(round(stats.norm.ppf(alpha),3)) # right tailing..

print(get_z(0.90))

1.645


https://www.utdallas.edu/~mbaron/3341/Practice12.pdf
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Thus, 2905 = 1.645 Using 1.21, but also using approximation as we do not know population
distribution,

V100

2 2
Pr (37.7 . 1.64591 <p <317+ 1.6459—)

V100 V100

In[27]: x, z, s, n = 37.7, 1.645, 9.2, 100
print(get_CI(x, z, s, n))

Pr (37.7 — 20,05

[36.186600000000006, 39.2134]

Thus the desired 90% CI intervals are [36.2,39.2]
Note: Since the sample size is high, even if ¢ distribution is used, result would be almost same,
because at such high sample sizes, ¢ distribution would be almost identical to z distribution.

9

2.2.5 Difference between two means, Welch’s ’t’ interval

The species, the deinopis and menneus, coexist in eastern Australia. The following summary statis-
tics were obtained on the size, in millimeters, of the prey of the two species. Calculate the 95%
confidence interval for the difference in their means.

Adult Dinopis Adult Menneus

n=10 m=10
T =10.26mm Yy = 9.02mm
s2=(2.51) 55 =(1.90)%

Solution
Given:
Let X = N(uz, 0%) be the random variable of sampling distribution for Adult Dinopis. And so is
Y = N(ug, a%) for Adult Menneus. Then we are given one sample set data frame from each species.
71 = 10.26mm, sz = 2.51 mm, n =10
71 = 9.02mm, sy =1.90 mm, m =10
1—a=0.95a=0.055=0.025
Approach:
Note the o, 0, are unknown. Also both n,m are small n < 30, m < 30. It is totally not needed
that n = m, but in this case we have that. Recalling 1.25 and 1.26,

Pr((

X =Y) =t nsw < (7 — py) < (X -Y) —I—t(%ﬂ«)sw) ~1l—a


https://onlinecourses.science.psu.edu/stat414/node/203/
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T — 7y, = 10.26 — 9.02

s2 sz [25512 190
= 4 2= - 4=
nom 10 10

Sw =
s2 sp\2 2512 1.90?\2
Gedy e
r— n__m _ 10 10
1 s2\2 1 s2y2 1(2.512>2+1(1.902>2
G G 50 o\ 10

In[28]: x_1, y_1, s_xbar, s_ybar, n, m = 10.26, 9.02, 2.51, 1.90, 10, 10
w_1l = round(x_1 - y_1,3)

def get_s_w(s_x, s_y,n,m):
v_x, v_y = (s_x**2)/mn, (s_y**2)/m
from math import sqrt
return round(sqrt(v_x + v_y),4)

s_w = get_s_w(s_xbar, s_ybar, n, m)

def get_r(s_x, s_y,n,m):
v_x, v_y = (s_x**2)/mn, (s_y**2)/m
num = (V_x + V_y)**2
den_1 = (1/(n-1))*((v_x)**2)
den_2 = (1/(m-1))*((v_y)**2)
r = num / (den_1 + den_2)
from math import modf
return modf (r) [1]

r = get_r(s_xbar, s_ybar, n, m)

print('x_bar - y_bar:{}, s_w:{}, r:{}'.format(w_1, s_w, r))
# calculate t value

cl = 0.95

half_alpha = round((1 - cl)/2,3)

from scipy import stats

t = round(stats.t.ppf(l-half_alpha, r),3)

print('t:' + str(t))

x_bar - ybar:1.24, sw:0.9955, r:16.0
t:2.12

Pr((y -Y) - tarsw < (hz — pg) < (X =Y) + (e r)8w> ~l—a

2

Pr(1.24 — (2.12)(0.9955) < (pz — pg) < 1.24 + (2.12)(0.9955)) ~ 0.95

In[29]: cilow, cihigh = round((w_1 - t*s_w),4),round((w_1 + t*s_w),4)
print(cilow, cihigh)

-0.8705 3.3505

Pr(—0.87 < (uz — py) < 3.35) = 0.95

36
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Thus the 95% confidence intervals for the difference of sample means of given problem is $(-0.87,
3.35)

2.2.6 Difference between two proportions

Duncan s investigating if residents of a city support the construction of a new high school. He’s
curious about the difference of opinion between residents in the North and South parts of the city.
He obtained separate random samples of voters from each region. Here are the results:

Supports Construction? North South

Yes 54 77
No 66 63
Total 120 140

Duncan wants to use these results to construct a 90% confidence interval to estimate the differ-
ence in the proportion of residents in these regions who support the construction project (ps — pn).
Assume that all of the conditions for inference have been met. Calculate 90% confidence interval
based on Duncan’s samples

Solution:

Conveniently the sample sizes are high, so we could assume normal approximations for sampling
distributions of sample proportions for both North and South parts of the city.

Given:

Y: Y;
Let =2 = N (pl, %) represent sampling distribution for South. Similarly, NN (pg, @>
ns ni nn
for North.
We have the test statistic as follows.
pA:yi:7qA:yi:1_7
ST ns  140°"7 T ng 140
~o_yn 54 _1_yﬂ_1_ﬂ
PNy T 120 T Ty T 120

1—a=090,a= 0.1,% —0.05

In[12]: t_s = [77/140, 1-(77/140), 54/120, 1-(54/120)]
t_s ['0.3f" % e for e in t_s]
t_s [float(i) for i in t_s]
[p_s, q_s, p_n, q_.n] = t_s

print(p_s, q_s, p_n, q_n)

0.55 0.45 0.45 0.55

. ps = 0.55, gg = 0.45, py = 0.45, py = 0.55 Recalling 1.27, we need to find,

Pr(—zg < (ps—pAN)A— (pAsA—pN)
/pigs +_pZZN

In[16]: diff = round(p_s - p_n,3)

<z

[M]]

>z1—a:0.90

n_s, n_n = 140,120
from math import sqrt
w_sd = round(sqrt((p_s*q_s/n_s) + (p_n*g_n/n_n)),3)


https://www.khanacademy.org/math/ap-statistics/two-sample-inference/two-sample-z-interval-proportions/v/calculating-two-sample-z-interval-confidence-interval-for-difference-of-proportions
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# get Z

cl = 0.90

from scipy import stats

alpha = 1 - cl

z = (-1)*round(stats.norm.ppf (alpha/2),3)

print(diff, w_sd, z)

0.1 0.062 1.645

Substituting, we get,

0.1— (pg —
Pr( —1.645 < 0(%%2 PN) 1.645) ~ 0.90

Pr((—1.645)0.062 <0.1— (ps —pn) < (1.645)0.062) ~ 0.90

Pr (0.1 — (1.645)0.062 < (ps — pn) < 0.1 + (1.645)0.062 ) ~ 0.90

In[18]: cilow, cihigh = round(diff - z*w_sd,3), round(diff + z*w_sd,3)
print(cilow, cihigh)

-0.002 0.202

Thus the 90% CI intervals for the difference between proportions are (—0.002,0.202). That is,

Pr( ~0.002 < (ps — py) < 0.202) ~ 0.90

2.3 Useful Snippets

2.3.1 Python

Get t score
Could be useful, when you have significance level o and degrees of freedom df = n — 1, and

have to calculate corresponding t score

In[30]: def get_t(cl, n):
from scipy import stats
half_alpha = round((1 - c1)/2,3)
return round(stats.t.ppf(1-half_alpha, n-1),3)

cl = 0.95 # confidence level
n =4 # sample size
print(get_t(cl, n))

3.182

Get Z score
Could be useful, when you have significance level a and have to calculate corresponding Z score.
Remember to always check if you need left tailed area or right tailed.
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In[31]: def get_z(cl):
#NOTE: returns right tailed area as that is mostly used in CI
from scipy import stats
alpha = round((1 - ¢1)/2,3)
return (-1)*round(stats.norm.ppf (alpha),3) # right tailing..

cl = 0.95
print(get_z(cl))

1.96

Z and T distribution
Plotting a z and t distribution.

In[32]: Ymatplotlib inline
from scipy.stats import t, norm
import numpy as np
import matplotlib.pyplot as plt

n=3

df = n-1

fig,ax = plt.subplots(1,1)

x = np.linspace(t.ppf(0.01,df), t.ppf(0.99,df),100)
ax.plot(x, t.pdf(x,df), color='C0O') # blue ts t distribution
ax.plot(x, norm.pdf(x), color='Cl') # red

plt.show()

040 +
0.35 -

0.30

025

020 1

015 1

0.10 -
0.05 -

0.00 -

2.3.2 Tikz in Ipython

Some parts of this book including this section are created using ipython notebooks and thus few
figures which needed to be constructed via tikz needed an extension. Below figures are created via
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tikz by using an ipython extension called tikzmagic, so the format is slightly different for preamble.
However, for tikz users, the essence could be easily captured.
For first time usage (or after reset and clear of notebook), always load tikz as below.

%load_ext tikzmagic

Also note, preamble is placed in a separate code cell above, because ipython needs magic
commands to start as first line in cells. Here, tikz execution needs a magic command in subsequent
cell.

Z distribution:

In[33]: preamble = '''
\pgfmathdeclarefunction{gauss}{3}{%
\pgfmathparse{1/ (#3*sqrt (2*pi))*exp (- ((#1-#2)"2) / (2*#3°2)) }%
}

In[34]: %%tikz -p pgfplots -x $preamble
% had to be this size to have a normal size in latex
\begin{axis}[
no markers,
domain=0:6,
samples=100,
ymin=0,
axis linesx=left,
xlabel=$x$,
ylabel=$f(x)$,
height=5cm,
width=12cm,
xtick=\empty,
ytick=\empty,
enlargelimits=false,
clip=false,
axis on top,
grid = major,
axis lines = middle

]

\def\mean{3}

\def\sd{1}

\def\cilow{\mean - 1.96%\sd}

\def\cihigh{\mean + 1.96%\sd}

\addplot [draw=none, fill=yellow!25, domain=\cilow:\cihigh] {gauss(x, \mean, \sd)}
\closedcycle;

\addplot [very thick,cyan!50!black] {gauss(x, 3, 1)};

\pgfmathsetmacro\valueA{gauss(1,\mean,\sd)}

\draw [gray] (axis cs:\cilow,0) -- (axis cs:\cilow,\valueA) (axis cs:\cihigh,0) --
(axis cs:\cihigh,\valueA);

\draw [yshift=0.3cm, latex-latex](axis cs:\cilow, 0) -- node [above] {Area = $0.95%}
(axis cs:\cihigh, 0);

\node[below] at (axis cs:\cilow, 0) {$\overline{X} - 1.96S$};
\node [below] at (axis cs:\mean, 0) {$\overline{X}$};
\node [below] at (axis cs:\cihigh, 0) {$\overline{X} + 1.96S$};

\node [below=0.75cm,text width=4cm] at (axis cs:\mean, 0){Sampling Distribution};

\end{axis}


https://github.com/mkrphys/ipython-tikzmagic
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flr)

Area = 0,95

. X X+ 1.068

Sampling Distribution

t distribution:

In[35]: preamble='""
\pgfmathdeclarefunction{gamma}{1}{%
\pgfmathparse{2.506628274631*sqrt (1/#1)+ 0.20888568* (1/#1)"(1.5)+
0.00870357*(1/#1)"(2.5)- (174.2106599%(1/#1)~(3.5))/25920-
(715.6423511%(1/#1) " (4.5))/1244160) *exp ((-1n(1/#1)-1) *#1}%
}

\pgfmathdeclarefunction{student}{2}{%
\pgfmathparse{gamma ((#2+1)/2.) /(sqrt (#2*pi) *gamma(#2/2.))
*((1+(#1x#1) /#2) ~ (- (#2+1) /2.)) V,
¥

In[36]: %%tikz -p pgfplots -x $preamble
\begin{axis}[

no markers,
domain=-6:6,
samples=100,
ymin=0,
axis linesx=left,
xlabel=$x$,
height=5cm,
width=12cm,
xtick=\empty,
ytick=\empty,
enlargelimits=false,
clip=false,
axis on top,
grid = major,
axis lines = middle,
y axis line style={draw opacity=0.25}

\def\mean{0}
\def\sd{1}
\def\df{3}
\def\cilow{-3.182}
\def\cihigh{3.182}

\addplot [draw=none, fill=yellow!25, domain=\cilow:\cihigh] {student(x, \df)}

\closedcycle;

\addplot [very thick,cyan!50!black] {student(x, \df)} node [pos=0.6, anchor=mid

west, xshift=2em, append after command={(\tikzlastnode.west) edge [thin, gray]
+(-2em,0)}] {$df=381};;

%https://tex.stackexchange.com/questions/453059/pgfmathsetmacro-creates-dimensions-

too-large-for-t-distribution/453062

\addplot [ycomb, gray, no markers, samples at={\cilow, \cihigh}] {student(x, \df)};

\draw [yshift=0.2cm, latex-latex](axis cs:\cilow, 0) -- node [above] {Area =
(axis cs:\cihigh, 0);

41
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\node[below] at (axis cs:\cilow, 0) {\cilow};
\node [below] at (axis cs:\mean, 0) {0};
\node [below] at (axis cs:\cihigh, 0) {\cihigh};

\node [below=0.75cm,align=center, text width=10cm] at (axis cs:\mean, 0){Sampling
Distribution has $t$ distribution for low sample sizes};

\end{axis}

Area = 0.95

-3.182 0 3182

Sampling Distribution has ¢ distribution for low sample sizes
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Appendix

3.0.1 Difference between two Random Variables

Suppose we have two populations described by random variables X (i;, 02) and Y (py, 05). We are
interested in the distribution of their differences W = X - Y. What would be p,,02? We could
solve that using Expectations. This is true for any distributions X and Y have, as long as they are
independent to each other or X # Y.

pw = EW] = E[X = Y] = E[X] - E[Y] = pa — p1y (3.1)

oy, = Var[W] = E[W?] — [E[W]]?
= E[(X -Y)’] - [B[X - Y]]?
= E[X? +Y? - 2XY] - (E[X] - E[Y])*
= E[X?) + ElY?] - B2XY] - { (BIX])* + (E[X])? - 2E[X]E[Y] }
= E[X?] + BE[Y?] - 2ERHYT — (BX])? - (B[Y])* + 2E ]
= {E[X* - (B[X])*} + {E[Y?] - (E[Y))*}
= VarX]+ VarlY]
ol =0+0? (3.2)

'w: Yy
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