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Chapter 1

Maximum Likelihood Estimation

1.1 Introduction

Encrypted Introduction as in textbooks

Suppose that we have a random variable X, whose pdf or pmf is known but the distribution
depends on an unknown parameter, say θ, that may have any value in a parameter space Ω.
For instance, it might be f(x; θ) = θ2(1 − θ)1−x, 0 < x < ∞ and θ ε Ω. In certain instances, an
experiments needs to select one member of the entire possibilities of θ family, {f(x; θ), θ ε Ω}.
That is, he needs a point estimate θ̂, the value of the parameter that corresponds to selected pdf
or pmf.

One of the most common estimation scenario is to take a random sample set from the selected
distribution (pdf or pmf) and try to estimate θ of the distribution. That is, we repeat the experiment
to take m number of samples, observe the sample X1, X2, · · ·Xm, and try to estimate θ by using
observations x1, x2, · · · , xm

The function we will use to estimate the θ, is called, estimator, u(X1, X2, · · · , Xn), and we
represent the computed estimate as u(x1, x2, · · · , xm). Our expectation is, this estimate should be
as close to θ as possible. Since we are estimating only one of all possible θ ε Ω, u(x1, x2, · · · , xm)
is called a point estimator

Decrypting it

Suppose we flip a coin. The outcome of how many heads we get, is a Bernoulli distribution.
Let us describe it with random variable X, that is, X denotes number of heads in an outcome and
since we flip only once, its values are X = 0, 1. That is, getting no heads or 1 head. We do know
its pmf as f(x; p) = p2(1− p)1−x, 0 < x < ∞ and 0 ≤ p ≤ 1. Note, p here is the mystic θ we just
talked about, and the parameter space Ω is from 0 to 1. There is always one p associated
with any Bernoulli distribution which we need to find out of all possibilities between 0 and 1
inclusive. The given Bernoulli distribution depends on this p and we set out to find that out one p
value. That is, we need a point estimate p̂, the value of the paramter that corresponds to selected
Bernoulli distribution.

One of the most common estimation scenario is to take a random sample set from the Bernoulli
distribution and try to estimate p of the distribution. That is, we flip the coin to take m num-
ber of samples, observe the sample X1, X2, · · ·Xm, and try to estimate p by using observations
x1, x2, · · · , xm. The observations might be something like 1, 0, 0, 1, 0, 1, · · · , 1, 1 indicating heads
and tails otherwise.
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The function we will use to estimate the p is called estimator u(X1, X2, · · · , Xn) and we
represent the computed estimate as p̂ = u(x1, x2, · · · , xm). Our expectation is p̂ should be as
close to real p as possible. Since we are estimating only one p̂ of all possible [0, 1] range, p̂ =
u(x1, x2, · · · , xm) is called a point estimator

1.2 Bernoulli Distribution

1.2.1 Theory

Suppose we flip a coin, only once. Then,

Probability Mass Function

f(x; p) = P (X = x) = px(1− p)1−x x = 0, 1

Mean

X = E[X] =
1∑

k=0

Xk · p(Xk) = p

Variance

σ2 = V ar(X) =
1∑

k=0

(Xk − X̄)2p(Xk) = E(X2)− [E(X)]2 = p(1− p)

1.2.2 Example: Fair coin

Let us flip a fair coin, so we know p = 0.5. If X is a random variable indicating no of heads in
the final outcome, then the probability mass function of X, would be as below.

The mean:0.5

Probability Mass Function for X=1
f(x; p) = P (X = x) = pxqn−x = (0.5)1(0.5)1−1 = 0.5
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Mean

X = E[X] =
1∑

k=0

Xk · p(Xk) = p = 0.5

Variance

σ2 = V ar(X) =
1∑

k=0

(Xk − X̄)2p(Xk) = E(X2)− [E(X)]2 = p(1− p) = (0.5)(0.5) = 0.25

Statistical Outcome

Above example was for a fair coin, so p = 0.5, but p could have varied anywhere between 0 and
1 in reality (that is, coin might be loaded). 0 ≤ p ≤ 1. So the question is if we observe a set of
samples X1, X2, · · · , Xm, with values x1, x2, · · · , xm how do we determine the best value for p? We
need a statistical procedure to determine the maximum likelihood of value p, given X1, X2, · · · , Xm.

Suppose we have conducted such an experiment and turns out below is the frequency distribution
of the outcome (Note this is similar to Fig A we just saw above). It reads, we got 50 heads and 50
tails out of m = 100 trails.

One could then estimate the underlying p as simply the mean value as below. If X1, X2, · · · , Xm

are the total m number of samples, then

p̂ =

1∑
i=0

Xin(Xi)

m
=

0(50) + 1(50)

50 + 50
= 0.5

Thus the point estimator p̂ for p from given sample set is 0.5. Since we already know the
theoretical p of fair coin, we are sure how best is our estimation p̂. This function which we just
used is the maximum likelihood estimation function.
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1.2.3 Example: Loaded coin

Suppose we have a loaded coin, and assume, we hypotheticall know, p = 0.75. If X is a random
variable indicating no of heads in the final outcome, then the probability mass function of X, would
be as below.

The mean:0.75

Probability Mass Function for X=1
f(x; p) = P (X = x) = pxqn−x = (0.75)1(0.75)1−1 = 0.75

Mean

X = E[X] =
1∑

k=0

Xk · p(Xk) = 0(0.25) + 1(0.75) = 0.75 = p

Variance

σ2 = V ar(X) =
1∑

k=0

(Xk − X̄)2p(Xk) = E(X2)− [E(X)]2 = p(1− p) = (0.75)(0.25) = 0.1875

Statistical Outcome

You see, Fig A above actually represents how a frequency distribution of an experiment would
be, provided the coin was loaded. So we could directly calculate the estimate as below.

p̂ =

1∑
i=0

Xin(Xi)

m
=

0(25) + 1(75)

25 + 75
= 0.75

Thus, from the sample observations x1, x2, .., xm, we are able to calculate p̂. Thus, for Bernoulli
distributions, the mean X of the sample set is the MLE of p.

Bernoulli Distribution; m trials

p̂ = u(x1, x2, · · · , xm) =

1∑
i=0

Xin(Xi)

m
→ p

(1.1)
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1.2.4 MLE Derivation

Establishing the likelihood function

We are just empirically convinced that the estimator u(X1, X2, · · · , Xm) =

1∑
i=0

Xin(Xi)

m
gives

us maximum likelihood value p̂ of p. Here we try to prove mathematically that is the best estimator
indeed out of all possibilities of p for given sample set.

We start with the sample set. Remember, that is all we have to look at and try backwards to
find maximum likelihood of p that would have resulted in that sample set. Let us take our loaded
coin example above. Out of m = 100 trials, we got about 75 as heads(1) and 25 as tails(0). Our
entire sample set might look like this: {1, 0, 1, 1, 0, · · · , 1} with length of m.

We will try to figure out the probability mass function of this sample result and see, when that
joint pmf maxes out for a given p. Why? because, that is the best case, where we would have
gotten all these values one after another. Any other joint pmf value, would have given lesser
probability for all these values to occur simultaneously.

Let me break it down. Here we are wondering I have this series of outcomes and I need to find
the probability of this occurance. This is a joint occurance, thus we would find the joint probability.
Remember, each trial is independent.

Suppose you have events A and B, and then asked, what is the probability of both A and B
happeningn, that is A ∩ B, then you would say, p(A,B) = p(A ∩ B) = p(A)p(B). Similarly, for
{1, 0, 1, 1, 0, · · · , 1},

p(X1 = 1, X2 = 0, X3 = 1, · · · , Xm = 1) = p(X1 = 1)p(X2 = 0)p(X3 = 1) · · · p(Xm = 1)

Generalizing for any sample set,

p(X1 = x1, X2 = x2, X3 = x3, · · · , Xm = xm) = p(X1 = x1)p(X2 = x2)p(X3 = x3) · · · p(Xm = xm)

We already know,

p(Xi = xi) = f(xi; p) = pxi(1− p)1−xi , xi = 0, 1 0 ≤ p ≤ 1

Combining above two equations, we get,

p(X1 = x1, X2 = x2, X3 = x3, · · · , Xm = xm) =
m∏
i=1

pxi(1− p)1−xi

= px1+x2+···+xm(1− p)(11+12+13···+1m)−(x1+x2+···+xm)

= py(1− p)m−y, where y =
m∑
i=1

xi

(1.2)

Now, given the sample set, we have arrived at a joint pmf function of p. This is called the
likelihood function. Let us denote it by L(p). So for a Bernoulli distribution we just established
the likelihood function as
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Bernoulli Distribution; m trials

The likelihood function,

L(p) = py(1− p)m−y, where y =

m∑
i=1

xi 0 ≤ p ≤ 1 (1.3)

Establishing the p range

We now need to find out, what is the p value for which, we would get L(p) to max out. Why?
Recall, that is the maximum probability our combination of sample values would have occurred.
That is the best value we could find. (eh, as long as there is only one peak or maximum for L(p),
but that is another problem for another time).

Let us check out what happens to L(p) for edge values.

Case 1: Getting all tails in sample set

This means,

y =
m∑
i=1

xi =
m∑
i=1

0 = 0 ∴ L(p) = p0(1− p)m−0 = (1− p)m

The above function (1− p)m will have its maximum when p = 0. Logically for any p > 0, 1− p
would be lesser. We got all tails, that means, the probability of getting heads should be 0 which
also makes sense (for other values of p, there is still a chance to get all tails, but comparitively lesser
chance. p = 0 has the maximum probability of getting us all tails, so that is our best estimate in
this case)

∴ when y = 0, Lmax(p) = 1 =⇒ p̂ = 0

Case 2: Getting all heads in sample set

This means

y =
m∑
i=1

xi =
m∑
i=1

1 = m ∴ L(p) = pm(1− p)m−m = pm

The above function pm will have its maximum value when p = 1 because, the maximum value
of p is 1. So maximum of pm is also 1. Any p < 1 will result in reduced pm also accordingly.

∴ when y = m, Lmax(p) = 1 =⇒ p̂ = 1

Case 3: Neither Case 1 or Case 2

This means, y is neither 0 nor m. That is, 0 < y < m

Case 3.1: When p̂ = 0

L(0) = 0y(1− 0)m−y = 0
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Case 3.2: When p̂ = 1

L(1) = 1y(1− 1)m−y = 1y0m−y = 0

In fact, we could already check for any sample set of m = 100, how the function L(p) behaves.
Only by observing where the function reaches maximum,

1. In Fig A, when y = 0, potential candidate for p̂ is 0 because that is where L(p) reaches
maximum of 1, and then quickly faded to 0 thereafter.

2. In Fig B, when y = m, potential candidate for p̂ is 1 because that is where L(p) reaches
maximum of 1, and was 0 till then.

3. In Fig C, when 0 < y < m, potential candidate for p̂ is y/m because that is where L(p)
reaches maximum (though not 1 but dependent on p, y). Note, at p = 0 and p = 1, L(p) is 0
already. In fact, it is 0 for most of p which is an interesting insight. It is only when we near
the y/m the L(p) rises and falls.

Bernoulli Distribution; m trials

� When y = 0, we already know best estimate as p̂ = 0 as L(p) reaches maximum value
1.

� When y = m, we already know best estimate as p̂ = 1 as L(p) reaches maximum value
1.

� When 0 < y < m, we already know L(p) reaches minimum value 0, when p̂ = 0 or
p̂ = 1. Since we set out to find the p̂ at which L(p) reaches maximum, we could ignore
p̂ = 0 and p̂ = 1 for 0 < y < m

� Combining above points, we could say, we need to focus only on cases 0 < y < m, and
in that, only where 0 < p < 1, because that is where L(p) attains maximum for which
we need to find respective p̂. In other words, if you get all tails or all heads in a sample
set, you know your best estimate p̂ already. We set out to find for rest of the cases
where 0 < p < 1
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Finding the optimal estimate

We just saw via graph (Fig C), the nature of L(p) where we could once again convinced of the
optimality of y/m as best candidate for point estimator p̂, however we also could and should prove

mathematically that is the case. From calculus, we know that the derivative
dL(p)

dp
will be 0 when

L(p) reaches maximum (one could refer to appendix 3.2 for a quick recap on this concept). So by
taking the derivative and equating to 0, we could derive the optimal p.

L(p) = py(1− p)m−y

dL(p)

dp
=
d{py(1− p)m−y}

p

From product rule of derivatives, in Leibniz’s notation,

d(u.v)

dx
=
du

dx
.v + u.

dv

dx

So,

dL(p)

dp
=
d(py)

dp
.(1− p)m−y +

d{(1− p)m−y}
dp

.py

The term
d{(1− p)m−y}

dp
is little tricky.

Let u = (1− p), k = (m− y), then by using chain rule

d{(1− p)m−y}
dp

=
d{uk}
dp

=
∂uk

∂u

∂u

∂p
= kuk−1∂(1− p)

∂p

= kuk−1(−1) = −kuk−1

= −(m− y)(1− p)m−y−1

Substituting,

dL(p)

dp
= ypy−1.(1− p)m−y − (m− y)(1− p)m−y−1.py

= ypyp−1.(1− p)m−y − (m− y)(1− p)m−y(1− p)−1.py

= py(1− p)m−y
(
yp−1 − (m− y)(1− p)−1

)
= py(1− p)m−y

(y
p
− m− y

1− p

)
∴

dL(p)

dp
= L(p)

(y
p
− m− y

1− p

)
Equating it to 0, and noting that, when the derivative is 0, L(p) reaches maximum, so it cannot

be 0, we get,

https://en.wikipedia.org/wiki/Product_rule
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dL(p)

dp
= L(p)

(y
p
− m− y

1− p

)
= 0

=⇒
(y
p
− m− y

1− p

)
= 0

= y − yp−mp+ yp = 0

= y −mp = 0 =⇒ y = mp

∴, at
dL(p)

dp
= 0, L(p) reaches maximum at y = mp or equivalently, in terms of p, p = y/m.

Replacing y with its original summation
m∑
i=1

xi, we finally get,

Bernoulli Distribution; m trials

p̂ =
y

m
=

m∑
i=1

xi

m
= x→ p

(1.4)

Thus, proved. Note it would have been easier to prove with taking logarithm on both sides of
L(p). Also note this is same as 1.1 except that, earlier we used frequency distribution’s data so
formula looks slightly different.

1.3 Binomial Distribution

Let us try similar approach for a Binomial distribution. Remember, binomial distribution is
simply Bernoulli distributions repeated. When each Bernoulli event is independent, the resultant
combined distribution (or the associated pmf) would be a Binomial distribution

1.3.1 Theory

Suppose we flip a coin, n no of times. Then,

Probability Mass Function

f(x; p) = P (X = x) =
n!

x!(n− x)!
px(1− p)n−x x = 0, 1, · · · , n

Mean

X = E[X] =
n∑
k=0

Xk · p(Xk) = np

Variance

σ2 = V ar(X) =
n∑
k=0

(Xk − X̄)2p(Xk) = E(X2)− [E(X)]2 = np(1− p)
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1.3.2 Example: Fair coin

Let us flip a fair coin (so we know p = 0.5), n = 4 times. If X is a random variable indicating
no of heads in the final outcome, then the probability mass function of X, for n = 4 would be as
below.

The mean:2.0

Probability Mass Function for X=2

f(x; p) = P (X = x) =
n!

x!(n− x)!
pxqn−x =

4!

2!(4− 2)!
(0.5)2(0.5)4−2 = 0.375

Mean

X = E[X] =
n∑
k=0

Xk · p(Xk) = np = 4(0.5) = 2

Variance

σ2 = V ar(X) =
n∑
k=0

(Xk − X̄)2p(Xk) = E(X2)− [E(X)]2 = npq = 4(0.5)(0.5) = 1

Statistical Outcome

Suppose we conduct an experiment of flipping the fair coin n = 4 times and observe the result
x1 = {0, 0, 1, 0} this would mean, TTHT or X = 1 heads. So frequency of (X=1) adds by 1.
Similarly, we repeat the experiment m = 160 times (just for convenience of numbers which you will
realize shortly). So our samples would be X1, X2, · · · , Xm. We note down the frequency of X = x
in each experiment and plot the graph. Suppose we get a discrete frequency distribution graph as
below (left one and we could derive right one from frequency data).

The mean:2.0
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Let us calculate the mean value of above frequency distribution, X.

X =

n∑
i=0

Xin(Xi)

m
=

0(10) + 1(40) + 2(60) + 3(40) + 4(10)

10 + 40 + 60 + 40 + 10
=

320

160
= 2

Wait a minute, our theoretical p was 0.5?! Yes, in case of Binomial, we go further as dividing
the mean X by no of flips n.

p̂ =
X

n
=

n∑
i=0

Xin(Xi)

nm
=

2

4
= 0.5

It happens that, in case of binomial distribution, the best estimator p̂ for p would be X/n.
Thus, from the sample observations x1, x2, .., xm, we are able to calculate p̂.

Binomial Distribution; n flips; m trials

p̂ = u(x1, x2, · · · , xm) =

n∑
i=0

Xin(Xi)

nm
→ p

(1.5)

Note: By substituting, n = 1 in above equation we get the MLE for Bernoulli as expected. We
now need to wonder how to prove, if this is the best MLE.

1.3.3 MLE Derivation

Let n be the number of flips and m be the number of trials. Then our sample set could be
looking something like this:

X1 = {0, 1, ...x1n} = 1 heads

X2 = {1, 1, ...x2n} = 4 heads

· · ·
· · ·

Xm = {1, 0, ...xmn} = 2 heads

Generalizing,
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X1 = {x11, x12, ...x1n} = x1 heads

X2 = {x21, x22, ...x2n} = x2 heads

· · ·
· · ·

Xm = {xm1, xm2, ...xmn} = xm heads

We already know, for a single Bernoulli distribution, the pmf is given by

P (X = x) =

(
n

x

)
px(1− p)n−x

Therefore, given an observed sample set X, the combined or joint probability of all sample
observations in the sample set could be given by, as likelihood function

L(p) = P (X1 = x1;X2 = x2; · · ·Xm = xm) = P (X1 = x1)P (X2 = x2) · · ·P (Xm = xm)

=
m∏
i=1

P (Xi = xi)

=
m∏
i=1

(
n

xi

)
pxi(1− p)n−xi

=

{
m∏
i=1

(
n

xi

)}{ m∏
i=1

pxi(1− p)n−xi
}

(1.6)

This time we will use natural logarithms to find the maximum. Recalling product rule of natural
logarithms 3.7 {

m∏
i=1

(
n

xi

)}
=

{(
n

x1

)(
n

x2

)
· · ·
(
n

xm

)}

=⇒ ln

{
m∏
i=1

(
n

xi

)}
=

{
ln

(
n

x1

)
+ ln

(
n

x2

)
+ · · ·+ ln

(
n

xm

)}

=
m∑
i=1

ln

(
n

xi

)
(1.7)

{
m∏
i=1

pxi(1− p)n−xi
}

= p(x1+x2+···+xm)(1− p)(n1+n2+···+nm)−(x1+x2+···+xm)

Let y =
m∑
i=1

xi. The preceding equation could be written as,

{
m∏
i=1

pxi(1− p)n−xi
}

= py(1− p)mn−y

Taking natural logrithm on both sides and using product rule,
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ln

{
m∏
i=1

pxi(1− p)n−xi
}

= ln
{
py(1− p)mn−y

}
= y
{
ln(p)

}
+ (mn− y)

{
ln(1− p)

} (1.8)

Using 1.8 and 1.7 in 1.6, and again using product rule,

ln
{
L(p)

}
=

m∑
i=1

ln

(
n

xi

)
+ y
{
ln(p)

}
+ (mn− y)

{
ln(1− p)

}
To find the maximum, let us equate the derivative of ln

{
L(p)

}
w.r.t p to 0.

d
{
{lnL(p)}

}
dp

= 0

=⇒
d
{ m∑
i=1

ln
(
n
xi

)}
dp

+
d
{
y{ln(p)}

}
dp

+
d
{

(mn− y){ln(1− p)}
}

dp
= 0

The first term has no p, so the derivative w.r.t p becomes 0. And for rest of components, by
referring to derivatives of natural logarithms 3.9 and 3.10,

0 + y
d{ln(p)}

dp
+ (mn− y)

d{ln(1− p)}
dp

= 0

y
1

p
+ (mn− y)

−1

1− p
= 0

=⇒ y

p
=
mn− y
1− p

y − yp = mnp− yp
y = mnp

p =
y

mn

Substituting, y =
m∑
i=1

xi, we get, p =

m∑
i=1

xi

mn
. Note that this is consistent with our empirical

evidence 1.5

Binomial Distribution; n flips; m trials

p̂ =
y

mn
=

m∑
i=1

xi

mn
=
x

n
→ p

(1.9)

1.4 Normal Distribution

Let us try Normal distribution as an example of MLE for continuous distribution.



CHAPTER 1. MAXIMUM LIKELIHOOD ESTIMATION 15

1.4.1 Theory

Probability Density Function

f(x; p) =
1√

2πσ2
exp
[
− (xi − µ)2

2σ2

]
Mean

µ

Variance

σ2

1.4.2 MLE Derivation

Let X1, X2, · · · , Xm be a random sample from N(θ1, θ2), where both the parameters belong to
parameter space defined as

Ω = {(θ1, θ2) : −∞ < θ1 <∞, 0 < θ2 <∞}

Letting θ1 = µ, θ2 = σ2, one might be tempted to attempt the likelihood function as below (as
combined joint probability of getting all the sample data.

L(θ1, θ2) = P (X1 = x1;X2 = x2; · · · ;Xn = xm)

However, unlike a pmf which directly gives P (Xi = xi), a pdf only a function and always needs
integration to find the probability area. That is, if x1 is a sample observation from N(θ1, θ2), then
P (X1 = x1) = 0, and we are not interested in that in particular (which was a wrong notion implicitly
implanted while attempting joint pmf ). Instead we are interested in a collective probability density
function of all samples’ individual probability densities.

That is, below is a continuous pdf for sample X1

A = f(x1; θ1, θ2) =
1√

2πθ2
exp
[
− (x1 − θ1)2

2θ2

]
But when we want to find a probability with above pdf its always in a range. For example,

P (X1 ≤ a) =

∫ a

−∞
f(x1; θ1, θ2)dx1 (1.10)

Similarly, for another sample X2 from same pdf,

B = f(x2; θ1, θ2) =
1√

2πθ2
exp
[
− (x2 − θ1)2

2θ2

]
And for that, for an interesting range, the probability could be something like below.

P (X2 ≤ b) =

∫ b

−∞
f(x2; θ1, θ2)dx2 (1.11)

Note A and B are the functions while, eq. 4 and 6 denote a probability calculated out of those
functions. When we say, we are interested in joint pdf, we are interested in the multiplication of
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the functions A and B (because they are independent), and not probabilities like 1.10 and 1.11.
The probability of any joint interested event could be calculated in resultant function AB. That is,

AB = f(x1, x2; θ1, θ2) =
2∏
i=1

1√
2πθ2

exp
[
− (xi − θ1)2

2θ2

]
And then, in this joint pdf I could calculate interested probabilities, for example,

P (X1 ≤ a;X2 ≤ b) =

∫ x1=a

−∞

∫ x2=b

−∞

2∏
i=1

1√
2πθ2

exp
[
− (xi − θ1)2

2θ2

]
Generalizing,

P (X1 ≤ x1;X2 ≤ x2) =

2∏
i=1

∫ xi

−∞

1√
2πθ2

exp
[
− (xi − θ1)2

2θ2

]
Not just left area, but any probability of interest could be calculated after this step. For

example,

P (X1 ≥ x1;X2 ≥ x2) =
2∏
i=1

∫ ∞
xi

1√
2πθ2

exp
[
− (xi − θ1)2

2θ2

]
This is why, unlike pmf, for a pdf,

f(x1, x2; θ1, θ2) = f(x1; θ1, θ2)f(x2; θ1, θ2)

6= P (X1 ≤ x1;X2 ≤ x2)

6= P (X1 ≥ x1;X2 ≥ x2)

6= P (X1 = x1;X2 = x2)

Thus, a better notion of joint pdf as the likelihood function is

L(θ1, θ2) = f(x1, x2, · · · , xm; θ1, θ2) = f(x1; θ1, θ2)f(x2; θ1, θ2) · · · f(xm; θ1, θ2)

=

m∏
i=1

1√
2πθ2

exp
[
− (xi − θ1)2

2θ2

]
Taking natural logarithms on both sides,

ln L(θ1, θ2) = ln

{
m∏
i=1

1√
2πθ2

exp
[
− (xi − θ1)2

2θ2

]}

= ln

{
m∏
i=1

1√
2πθ2

}
+ ln

{
m∏
i=1

exp
[
− (xi − θ1)2

2θ2

]} (1.12)

Note that the term,

ln

{
m∏
i=1

1√
2πθ2

}
= ln

(
1√

2πθ2

)m
= ln (2πθ2)

−m
2

=

(
−m

2

)
ln (2πθ2)
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And for the 2nd term,

ln

{
m∏
i=1

exp
[
− (xi − θ1)2

2θ2

]}
= ln

{
exp

m∑
i=1

[
− (xi − θ1)2

2θ2

]
= ln

{
exp
[
−
∑m

i=1(xi − θ1)2

2θ2

]}
Recall that,
a = eln(a) so when a = e, e = eln(e) =⇒ ln(e) = 1. Applying that,

ln

{
m∏
i=1

exp
[
− (xi − θ1)2

2θ2

]}
=

[
−
∑m

i=1(xi − θ1)2

2θ2

]
Applying above derivations in eq 1.12,

ln L(θ1, θ2) =

(
−m

2

)
ln (2πθ2) +

[
−
∑m

i=1(xi − θ1)2

2θ2

]
(1.13)

In order to evaluate when lnL(θ1, θ2) reaches maximum, let us take the partial derivatives w.r.t
to θ1, θ2 and equate them to 0 (refer appendix 3.2.7)

Assuming θ2 as a constant,

∂L

∂θ1
= 0 +

∂

[
−
∑m

i=1(xi − θ1)2

2θ2

]
∂θ1

=

[
−
∑m

i=1 2(xi − θ1)

2θ2

]

=

[
−
∑m

i=1(xi − θ1)

θ2

]
(1.14)

Taking
∂L

∂θ1
= 0, we get, [

−
∑m

i=1(xi − θ1)

θ2

]
= 0

=⇒
m∑
i=1

(xi − θ1) = 0

m∑
i=1

xi −mθ1 = 0

=⇒ θ1 =
1

m

m∑
i=1

xi = x

(1.15)

Assuming θ1 as constant,

∂L

∂θ2
=

(
−m

2

)
∂ln(2πθ2)

∂θ2
+

∂

∂θ2

[
−
∑m

i=1(xi − θ1)2

2θ2

]
(1.16)

Taking the first term, recall 3.11 that
d(ln(cx))

dx
=

1

x
, yeah the constant disappears?!
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∴

(
−m

2

)
∂ln(2πθ2)

∂θ2
=

(
−m

2

)
1

θ2

Taking the second term,

∂

∂θ2

[
−
∑m

i=1(xi − θ1)2

2θ2

]

=
−
∑m

i=1(xi − θ1)2

2

∂

∂θ2

(
1

θ2

)
=
−
∑m

i=1(xi − θ1)2

2

(
∂θ−1

2

∂θ2

)
=
−
∑m

i=1(xi − θ1)2

2

(
− θ−2

2

)
=

∑m
i=1(xi − θ1)2

2θ2
2

Substituting both in 1.16,

∂L

∂θ2
=

(
−m

2

)
1

θ2
+

∑m
i=1(xi − θ1)2

2θ2
2

(1.17)

Taking
∂L

∂θ2
= 0, we get, (

−m
2

)
1

θ2
+

∑m
i=1(xi − θ1)2

2θ2
2

= 0

=⇒
∑m

i=1(xi − θ1)2

2θ2
2

=

(
m

2

)
1

θ2

Cancelling common terms on both sides,∑m
i=1(xi − θ1)2

θ2
= m

=⇒ θ2 =

∑m
i=1(xi − θ1)2

m

θ2 =

∑m
i=1(xi − x)2

m

(1.18)

1.4.3 Visualization

Visualizing the likelihood function lnL(θ1, θ2), helps to comprehend the concept better espe-
cially when we observe where it maxes out to provide us the maximum likelihood estimators θ̂1, θ̂2.
Graphing the direct L(θ1, θ2) is complicated, so we instead graphed the log likelihood function
ln(L(θ1, θ2)). Sample set from a binomail distribution (which is approximated by normal distribu-
tion usually) is used to feed the ln(L), and then its graph observed for varying values of θ1, θ2.
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Sample setup

In[1]: x_i = [0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4] # a binomial distribution

# x_i = np.random.normal(2, 1.5, 100) # one could also try this

m = len(x_i)

mean = sum(x_i)/m

variance = sum([ (i-mean)**2 for i in x_i ])/m

print('mean:{}, variance:{}'.format(mean, variance))

mean:2.0, variance:1.0

Graph

For brevity, graph code is hidden. I have created a separate interactive page which explains in
detail, how the graph is created and also an interactive 3D view of below image at the end of it.
Please check it out here.

Out[3]:

http://nbviewer.jupyter.org/gist/parthi2929/96f5ad7b30a8588ee2920fed594a7172
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Finding the maximum from the computed ln(L)

The ln(L) value was computed for different values of (θ1, θ2) along with fixed sum of sample sets
as in the formula, to build the graph. Now, one could find the maximum value of that computed
ln(L), and note that, the respective (θ1, θ2) are indeed the mean and variance as we calculated in
1.15 and 1.18.
In[4]: df.loc[df['L'].idxmax()]

Out[4]: t1 2.000000

t2 1.000000

L -22.703017

Name: 789, dtype: float64

Normal Distribution

Thus, for any sample set from normal distribution with N(θ1, θ2), Maximul Likelihood Esti-
mators are

θ̂1 =
1

m

m∑
i=1

xi = x (1.19)

θ̂2 =

∑m
i=1(xi − x)2

m
(1.20)



Chapter 2

Regression

2.1 The Simple Linear Regression Model

2.1.1 Introduction

Suppose we have a sample set (X,Y ) of size m, that is (X,Y ) = {(x1, y1), (x2, y2) · · · (xm, ym)}.
Then a simple linear model assumes a linear relationship between variables (xi, yi), and tries to
estimate that. For example, observe a sample scatter plot of sample set in Figure 2.1. By looking
at the figure, one could intuitively guess a linear relation between x and y variables as y increasing
roughly with x. It is this we will try to find, and in that, find the best possible one.

(x1, y1)

x

y

Fig 1: Given Sample Set

We will find a line that passes through these points, there by being the best line, that has
minimum vertical or ∆y distance from all the sample points. Typically such a line would be unique
to given any sample set and it is the best fit line possible. Figure 2.2 shows such a potential line.
The vertical difference ∆y1 as shown in figure, is the distance between the point (x1, y1) and the
line.

21
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(x1, y1)

∆y1

x1

x

y

Fig 2: Finding a best-fit line is the goal

When a sample set is given, we will assume such a line exists and that ideally, all sample points
should have fallen on that line, implying a perfect linear relationship between x and y. However,
because of an underlying error ε, the sample points have fallen apart, around the line, giving
us the sample set. Suppose, such a perfect linear relationship exists ideally, let us say, it could be
defined as below by using a regular line equation with slope β1 and y-intercept β0, as

y = β0 + β1x

Thus in this ideal world, y is completely deterministic from x. However, when we introduce
randomness in the form or error ε, the y value also becomes a random variable associated with the
randomness from ε. That is, if we describe such a RV as Y , then

Y = β0 + β1x+ ε (2.1)

We do not know ε. Naturally, the expectation of the error is to be zero, or in other words
we assume, though there is room for error, but the zero error has maximum probability. Thus
assuming a normal distribution of N(0, σ2),

E(ε) = 0 V ar(ε) = σ2 (2.2)
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Assumptions and Approach

� Given the sample set value, we will imagine there to be an ideal linear relationship, and
try to find that hypothetical line which will have least error for all observed sample
points.

� Also assume that error has maximum probability to be 0, and normally distributed,
formulating as a cause for observing sample values as observed instead of, on the line
where error would have been zero.

This line of thought is important and fundamental to our model. Because of this assumption,
we could now say, the points should have ideally sat on the line, but resulted in their places in
reality as we find them, because of the error. Thus the observed y value is the result of the error ε,
while its expected y value E(Y |x) or µY.x1 , should sit on the line. This is illustrated in Figure
2.3. Similarly the only randomness comes from error ε, so its variance directly transfers to the Y
random variable due to 2.2. That is, σY.x1 → σ.

(x1, y1)

∆y1

x1

E(Y |x1)
= µY.x1

x

y

Fig 3: y1 and E(Y |x1)

We could also prove them mathematically as below. For any point (x1, y1)

µY.x1 = E(Y |x1) = E(β0 + β1x1 + ε) = E(β0) + E(β1x1) + E(ε)

If a is a constant observed, then E(a) = a only as its the only value and already observed. And
since ε = N(0, σ2) we could write,

µY.x1 = E(Y |x1) = β0 + β1x1

Similary,
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σ2
Y.x1 = V ar(Y |x1) = V ar(β0 + β1x1 + ε)

If a is a constant observed, then V ar(a) = 0 only as its already observed and there is no
uncertainty. And since ε = N(0, σ2) we could write,

σ2
Y.x1 = V ar(Y |x1) = 0 + 0 + σ2

Thus, in general for any x, in continuous scale, we could say,

µY.x = E(Y |x) = β0 + β1x

σ2
Y.x = V ar(Y |x) = σ2

Note, though our sample values are discrete, we are able to get a line at continuous scale,
because its the ideal situation, where all the expected values should lie on that hypothetical line
y = β0 + β1x. So this line should stay true for any value of x. It is a hypothetical line of expected
or mean values E(Y |x), so understandably, its called line of mean values. It should also have
been the ideal line, where all sample points should have rested, provided there were no errors. So
this line is also called True regression line.

(x1, y1)
True Regression Line

y = β0 + β1x

∆y1

x1

E(Y |x1)
= µY.x1

x

y

Fig 4: β0 + β1x is the ideal hypothetical line with no error
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Expected value and Variance of Y given a sample x∗

For any observed value (x∗, y∗),

µY.x∗ = E(Y |x∗) = β0 + β1x
∗

σ2
Y.x∗ = V ar(Y |x∗) = σ2

(2.3)

In continuous scale, for any (x, y),

µY.x = E(Y |x) = β0 + β1x

σ2
Y.x = V ar(Y |x) = σ2

(2.4)

It is difficult to visualize the error randomness (say, its pdf) in the x, y graph as ε is another 3rd
variable hidden underneath. However we just saw, how that distribution transfers to the random
variable Y . If ε has N(0, σ2), then Y has distribution N(β0 + β1x, σ

2). This facilitates us to view
the randomness on the face of random variable Y as shown in 2.5. Observe that, for a point, say
(x1, y1), for the given x1, ideally, y should have been the mean value E(Y |x1) = β0 + β1x, that
has the highest probability of the normal distribution. That is our assumption and then we say,
because there exists an error, we got y at y1. Note for the sample location y1, the error is low, but
still had a chance.

(x1, y1)
True Regression Line

y = β0 + β1x

∆y1

x1 E(Y |x1) = µY.x1

x

y

f(Y |x)

Fig 5: The Probability Distribution f(Y |x1)

The distance how much the erroneous locations of sample points spread out from the mean
value is determined by variance σ of the error. Note that, we assume this error is constant for all
sample values. This means, any point xm, ym has same probability distribution of committing an
error, as any other point in the sample set. This assumed property is called Homoscedasticity. If
this is not the case, then the characteristic is called Heteroscedasticity. One could fairly assume
from given a sample set, if the underlying error could be Homoscedastic or Heteroscedastic, by
eyeballing at the spread from the regression line. We will focus and assume Homoscedasticity and
for any one interested, Frost [2] has written an interesting article about dealing with the same.
Given that Homoscedasticity is assumed, the probability distribution would be uniform across the
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regression line. This is illustrated in 2.6. That is, for any x value, the equivalent f(Y |x) could be
picked up like a card from a stack. This distribution across the regression line could be continuous
or discrete, depending on x is continuous or discrete.

2

4

6

10

20

30

40

5

10

Fig 6: The pdf f(Y |x) is continuous or discrete along the regression line
depending on x is continuous or discrete

Now that our sample set is discrete, let us focus on that. We need to find out, for given sample
set, what would be the optimal values of β0 and β1.

2.1.2 Estimating Model Parameters

The goal is to find (β0, β1) such that, the resulting line is some how ”best-fit” among all
possible lines of E(Y |x). You see, our sample set could be a part of a bigger population, and thus
the hypothetical line for entire population could be anything. However, we have only a sample
set, so our best bet is always what is the best representative of the sample. That is, given the
samples, what would be the best representative regression line is what our goal is. Imagine, if
all sample lines, line up in a certain way, then our best bet would be just a line cutting across all
those points. This suggests, all sample points have zero error, or have fallen at their respective
highest probability mean locations, thus one could expect any more new sample to take a similar
place on that line. Note that in this case, all lines are at zeroth distance from the mean line. This
is illustrated in 2.7 where the vertical red dotted line represents maximum probability.

Now when the samples deviate from such a hypothetical mean line, best bet then to find the
mean line is to find one, that has least distance from all the sample points. The sum of all the
distances from all sample points to that line would be minimal compared to any other lines’ similar
sum of distances. The distances are illustrated in 2.8, where blue lines indicate the actual distance
from the true regression line. Now, naturally, since the points could lie on either side of the line,
would give rise to relatively positive or negative distances, and thus cancelling each others’ distances
out partly here and there. To avoid that, one could take absolute distances from the point to the
line.
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Fig 7: An ideal case
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Fig 8: A practical case
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Principle of Least Squares

However, instead of taking the absolute distances, we now, out of nowhere(?!) choose to take
the square of the calculated distance and sum up to find the total distance. As per my current
understanding, this was mearly a choice for algebraic convenience 1. We also have other ways of
measuring approaches (angled distance instead of vertical etc) but we shall not get in to it as this
is only Simple Regression Model.

Now that we have fixated on finding the least sum of squares of the distances (note because we
squared, there was no absoluteness to be considered in equation), let us look in to the mathematical
form of it. This principle which can be traced back to famous mathematician Guass, says that, a
line provides a good fit to the data if the vertical distances (deviations) from the observed points to
the line are small. The measure of the goodness of fit is the sum of the squares of these deviations.
The best-fit line is then the one having the smallest possible sum of squared deviations.

Principle of Least Squares (from Devore [1])

The vertical deviation of the point (xi, yi) from the line y = b0 + b1x is

height of point - height of line = yi − (b0 + b1xi)

The sum of squared vertical deviations from the points (x1, y1), · · · , (xm, ym) to the line is
then

f(b0, b1) =
n∑
i=1

[yi − (b0 + b1xi)]
2 (2.5)

The point estimates of β0 and β1, denoted by β̂0 and β̂1 and called the least square
estimates, are those values that minimize f(b0, b1). That is (β̂0, β̂1) are such that,
f(β̂0, β̂1) ≤ f(b0, b1) for any (b0.b1). The estimated regression line or least squares
line is then the line whose equation is

y = β̂0 + β̂1x (2.6)

Note that 2.6 is same as expected mean line or true regression line as expressed in 2.4. Here we
just devised a way to find those optimal (β0, β1).

Using Maximum Likelihood Estimation

We could also arrive at 2.5 via Maximum Likelihood Estimation (which was the reason we had
entire chapter on MLE before regression in first place). Recall each sample point as shown on figure
2.8, has the pdf f(Y |x) = N(β0 + β1x, σ

2). Then, as per MLE, we would like to know what is
the joint probability of all these samples points to be at their observed locations. It will be useful
to recall MLE derivation for Normal distribution as we saw in 1.12. In similar fashion, for each
sample point, the pdf could be written as,

f(Y |xi;β0, β1) = N(β0 + β1xi, σ) =
1√

2πσ2
exp
{
− [yi − (β0 + β1xi)]

2

2σ2

}
And as usual, assuming all these sample points are independent and identically distributed, we

could arrive at their likelihood function as

1http://www.bradthiessen.com/html5/docs/ols.pdf
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L(β0, β1) = f(Y |x1;β0, β1, Y |x2;β0, β1, · · ·Y |xm;β0, β1)

= f(Y |x1;β0, β1)f(Y |x2;β0, β1) · · · f(Y |xm;β0, β1)

=
m∏
i=1

1√
2πσ2

exp
{
− [yi − (β0 + β1xi)]

2

2σ2

}
=

{( 1

2πσ2

)m
2

}{
m∏
i=1

exp
{
− [yi − (β0 + β1xi)]

2

2σ2

}}

=
(
2πσ2

)−m
2

{
exp
{
−
∑m

i=1[yi − (β0 + β1xi)]
2

2σ2

}}
Note, using product rule of logarithms, for any function f = paeb,

ln(paeb) = aln(p) + b

Thus, taking natural logarithm on both sides of likelihood function,

ln(L(β0, β1)) = −m
2

(
ln(2πσ2)

)
−
∑m

i=1[yi − (β0 + β1xi)]
2

2σ2
(2.7)

The function 2.7 is a function of two variables (β0, β1), thus graphically represents a 3D surface
plot as shown in figure 2.9, with height of the surface at any point is the function value evaluated
at that point. We need to find out a point on this surface, where the function reaches maximum.
The value of (β0, β1) at that point represents optimal values (β̂0, β̂1). Why? Because, associated
with those points, is the probability density function that yields maximum probability of getting
all those sample sets in the places they are observed.

MLE leads to OLS

Before we find the optimal points, note that equation 2.7 has the variables (β0, β1) in the second
term of RHS, and thus it is on that term we would be operating upon to find the optimal value.
That is, when we derive w.r.t. (β0, β1) , the first term on RHS is a constant so goes away and
constants in 2nd term too, would not offer any information, which we will see shortly, due to which
we would just be equating the numerator of 2nd term RHS, to find the optimal value. That is, let

H(β0, β1) =
m∑
i=1

[yi − (β0 + β1xi)]
2 (2.8)

then, by attempting to find the critical points of log likelihood lnL(β0, β1) of given sample set,
we would essentially operate upon H(β0, β1). Note that this H(β0, β1) is exactly equivalent to the
ordinary least squares equation we saw in 2.5.

Derivation

To find the critical points on the surface (which could be maximum or minimum or saddle
point), let us take first order partial derivatives and equate to 0. For details on why we do this,
refer appendix 3.2.7 where we have shortly explained the concept behind using derivatives for
finding critical points.

Keeping β0 as constant and taking partial derivative with respect to β1, we get,
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Simple Regression Model using MLE

Fig 9: Log Likelihood function of given sample set
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∂ln(β0, β1)

∂β1

∣∣∣∣
β0=k

= 0− 2
{∑m

i=1[yi − (β0 + β1xi)(−xi)]
2σ2

}
=

1

σ2

{ m∑
i=1

[yi − β0 − β1xi](xi)
}

Keeping β1 as constant and taking partial derivative with respect to β0, we get,

∂ln(β0, β1)

∂β0

∣∣∣∣
β1=k

= 0− 2
{∑m

i=1[yi − (β0 + β1xi)]

2σ2

}
(−1)

=
1

σ2

{ m∑
i=1

[yi − β0 − β1xi]
}

Equating both to 0, we get, (note, now the paramters are (β̂0, β̂1)) because they are the optimal
values we are going to find out by equating to 0.

m∑
i=1

[yi − β̂0 − β̂1xi] = 0 (2.9)

m∑
i=1

[yi − β̂0 − β̂1xi]xi = 0 (2.10)

Due to repeated use, for a while, let
m∑
i=1

=⇒
∑

i.

We know x =
1

m

∑
i xi, and y =

1

m

∑
i yi. Thus,

∑
i

xi = mx (2.11)∑
i

yi = my (2.12)

Substituting in 2.9,

∑
i

[yi − β̂0 − β̂1xi] = 0∑
i

yi −mβ̂0 − β̂1

∑
i

xi = 0

my −mβ̂0 −mβ̂1x = 0

y − β̂0 − β̂1x = 0

y = β̂0 + β̂1x (2.13)

For any xi, let
ŷi = β̂0 + β̂1xi (2.14)

Substituting 2.14 in 2.10,
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∑
i

[yi − β̂0 − β̂1xi]xi = 0∑
i

[yi − (β̂0 + β̂1xi)]xi = 0∑
i

(yi − ŷi)xi = 0 (2.15)

Solving for β1

Subtract 2.13 from 2.14,

ŷi − y = (β̂0 + β̂1xi)− β̂0 + β̂1x

= β̂1(xi − x) (2.16)

Adding and cancelling yi on LHS,

(ŷi − y) + (yi − yi) = β̂1(xi − x)

(ŷi − yi) + (yi − y) = β̂1(xi − x)

Multipying both sides by (xi − x) and summing up

(ŷi − yi)(xi − x) + (yi − y)(xi − x) = β̂1(xi − x)(xi − x)∑
i

(ŷi − yi)(xi − x) +
∑
i

(yi − y)(xi − x) = β̂1

∑
i

(xi − x)2 (2.17)

Focussing on
∑

i(ŷi − yi)(xi − x)

∑
i

(ŷi − yi)(xi − x) =
∑
i

(ŷi − yi)xi − x
∑
i

(ŷi − yi)

Note from 2.15,
∑

i(ŷi − yi)xi is 0. Thus,

∑
i

(ŷi − yi)(xi − x) = −x
∑
i

(ŷi − yi)

Let us calculate
∑

i(ŷi − yi) separately,..
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∑
i

(ŷi − yi) =
∑
i

ŷi −
∑
i

yi

=
∑
i

(β̂0 + β̂1xi)−my

=
∑
i

β̂0 +
∑
i

β̂1xi −my

= mβ̂0 +mβ̂1x−my
= m(β̂0 + β̂1x)−my

= my −my
= 0 (2.18)

Thus, ∑
i

(ŷi − yi)(xi − x) = 0 (2.19)

Substituting 2.19 in 2.17,

∑
i

(yi − y)(xi − x) = β̂1

∑
i

(xi − x)2

=⇒ β̂1 =

∑
i(yi − y)(xi − x)∑

i(xi − x)2

From 2.13,

β̂0 = y − β̂1x

Regression Parameters using MLE

For the true line of regression E(Y |x) = β̂0 + β̂1x,

β̂1 =

∑
i(yi − y)(xi − x)∑

i(xi − x)2
(2.20)

β̂0 = y − β̂1x (2.21)

It is strongly advised to check out our interactive example 2 where we have shown visually and
also proven how close the results are, between direct formula we just derived and also if directly
picking up point of maximum value from the log likelihood graph itself.

2http://nbviewer.jupyter.org/gist/parthi2929/e092970b94ee6aeb99519457df41921a
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Appendix

3.1 e and natural logarithms

3.1.1 The basics of e

Case 1:

Suppose we have a function M(t) = 2t and we are interested in its rate of change
dM(t)

dt
.

dM(t)

dt
= lim

dt→0

2(t+dt) − 2t

dt
= lim

dt→0

2t2dt − 2t

dt
= lim

dt→0

2t(2dt − 1)

dt
∴
d(2t)

dt
= lim

dt→0
2t
(2dt − 1

dt

)
One could note that, as dt→ 0, the component

(2dt − 1

dt

)
→ 0.6931 as shown below.

In[36]: dt = [0.1, 0.01, 0.005, 0.001,0.0005, 0.0001]

cl = [print(i, round((2**i-1)/i,5)) for i in dt]

0.1 0.71773

0.01 0.69556

0.005 0.69435

0.001 0.69339

0.0005 0.69327

0.0001 0.69317

So,

d(2t)

dt
= lim

dt→0
2t
(2dt − 1

dt

)
= 2t(0.6931) (3.1)

34
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Case 2:

Suppose we have a function M(t) = 3t and we are interested in its rate of change
dM(t)

dt
.

dM(t)

dt
= lim

dt→0

3(t+dt) − 3t

dt
= lim

dt→0

3t2dt − 3t

dt
= lim

dt→0

3t(2dt − 1)

dt
∴
d(3t)

dt
= lim

dt→0
3t
(3dt − 1

dt

)
One could note that, as dt→ 0, the component

(3dt − 1

dt

)
→ 1.09867 as shown below.

In[38]: dt = [0.1, 0.01, 0.005, 0.001,0.0005, 0.0001]

cl = [print(i, round((3**i-1)/i,5)) for i in dt]

0.1 1.16123

0.01 1.10467

0.005 1.10164

0.001 1.09922

0.0005 1.09891

0.0001 1.09867

So,

d(3t)

dt
= lim

dt→0
3t
(3dt − 1

dt

)
= 3t(1.09867) (3.2)

Generalization

Similarly for any M(t) = at, we could prove,

d(at)

dt
= lim

dt→0
at
(adt − 1

dt

)
= atC where C is some constant (3.3)

Wonder

Naturally if we wonder, is there any similar M(t) for which the derivative is itself? (In other
words, that some constant becomes 1?!). We could solve this as below.

We want to find a such that,

lim
dt→0

(adt − 1

dt

)
= 1

Rewriting,
lim
dt→0

adt = 1 + dt ∴ a = lim
dt→0

(1 + dt)1/dt

We can mathematically prove that, (1 + n)1/n approaches a constant, but for here, we could
simply compute like earlier, what is the value it is approaching..

In[45]: dt = [0.1, 0.01, 0.005, 0.001,0.0005, 0.0001]

cl = [print(i, round((1 + i)**(1/i),5)) for i in dt]
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0.1 2.59374

0.01 2.70481

0.005 2.71152

0.001 2.71692

0.0005 2.7176

0.0001 2.71815

∴ we do have one constant 2.718 for which, the derivative of it is itself. That is,

The value of e

Let e = 2.71815, then
d(et)

dt
= et (3.4)

3.1.2 Derivative of ect

What is
d(ect)

dt
? This can be solved by chain rule in differential calculus.

Let u = ct, then by chain rule,

d(ect)

dt
=
d(eu)

dt
=
d(eu)

du

du

dt
= eu

du

dt

Substituting u = ct back,
d(ect)

dt
= ect

d(ct)

dt
= cect

The derivative of ect

Let e = 2.71815, then
d(ect)

dt
= cect (3.5)

3.1.3 Using e for any exponent form

A short summary of what we saw earlier.

d(2t)

dt
= (0.6931)2t

d(3t)

dt
= (1.0986)3t

d(at)

dt
= (C)at, where C is some constant depending on a

Let 2 = eC . Then

2t = eCt

Taking derivatives on both sides,

d(2t)

dt
=
d(eCt)

dt
=⇒ (0.6931)2t = CeCt =⇒ C = 0.6931
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That is, the constant we earlier got, is nothing but the power to which we need to raise e to
get the base value 2. That is, 2 = e0.6931. We could call this constant as natural logarithm of 2,
denoted by ln(2) or loge(2)

Similarly, let 3 = eC . Then

3t = eCt

Taking derivatives on both sides,

d(3t)

dt
=
d(eCt)

dt
=⇒ (1.0986)2t = CeCt =⇒ C = 1.0986

Thus, 3 = e1.0986. We could call this constant as natural logarithm of 3, denoted by ln(3)
or loge(3)

Summarizing,

2 = eln(2), ln(2) = loge(2) = 0.6931

3 = eln(3), ln(3) = loge(3) = 1.0986

Any number in terms of e

Any number could be equated by e to the power of its natural logarithmic value, which is a
unique constant that could be derived.

a = eln(a), ln(a) = loge(a) (3.6)

3.1.4 Multiplication and Division simplified

Suppose we have a function L(p, q) = pyqz

We could make the multiplication of such exponents in to simpler form of addition of their
natural logarithms as below.

Let p = eC1 and q = eC2 , then we already have seen, C1 = ln(p), C2 = ln(q).

∴ pyqz = eC1yeC2z = eC1y+C2z = eln(p)y+ln(q)z

If L = eln(L) similarly, then we could write,

L = pyqz

eln(L) = eln(p)y+ln(q)z

=⇒ ln(L) = yln(p) + zln(q) or

loge(L) = yloge(p) + zloge(q)

If L(p, q) =
py

qz

py

qz
=
eC1y

eC2z
= eC1y−C2z = eln(p)y−ln(q)z

If L = eln(L) similarly, then we could write,
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L =
py

qz

eln(L) = eln(p)y−ln(q)z

=⇒ ln(L) = yln(p)− zln(q) or

loge(L) = yloge(p)− zloge(q)

Thus we have simplified multiplication and division to addition and subtraction provided we
know the equivalent natural logarithms of the values involved.

Multiplication and Divison Simplification

� If L(p, q) = pyqz, then
loge(L) = yloge(p) + zloge(q) (3.7)

� If L(p, q) =
py

qz
, then

loge(L) = yloge(p)− zloge(q) (3.8)

3.1.5 Derivatives of ln

We only see few derivatives that could be useful in MLE.

Q1: What is the derivative of
d(ln(x))

dx
?

Let y = ln(x) = logex. This means, ey = x
Differentiating that,

ey = x
d(ey)

dx
=
dx

dx
ey
dy

dx
= 1

dy

dx
=

1

ey
∴
d(ln(x))

dx
=

1

x

Q2: What is the derivative of
d(ln(1− x))

dx
?

Let y = ln(1− x) = loge(1− x). This means, ey = 1− x
Differentiating that,

ey = 1− xd(ey)

dx
=
d(1− x)

dx
ey
dy

dx
= −1

dy

dx
=
−1

ey
=
−1

1− x
∴
d(ln(1− x))

dx
=
−1

1− x

Q3: What is the derivative of
d(ln(cx))

dx
?

Let u = cx, y = ln(u). This means, ey = u
Differentiating that,

ey = u

d(ey)

dx
=
du

dx
=
d(2πx)

dx
= 2π

ey
dy

dx
= 2π

dy

dx
=

2π

ey
=

2π

u
=

2π

2πx
=

1

x
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Derivatives of ln

�

d(ln(x))

dx
=

1

x
(3.9)

�

d(ln(1− x))

dx
=
−1

1− x
(3.10)

�

d(ln(cx))

dx
=

1

x
(3.11)

3.2 Applying derivatives to analyze functions

3.2.1 Introduction

Inspired from this video from Khan Academy.
Here we will have a quick glance on the basics of finding maxima and minima of a given function.
Maxima - plural of maximum Minima - plural of minimum [a, b] - closed interval - includes a

and b (a, b) - open interval - excludes a and b

3.2.2 Critical Points

Given a function f(x),

1. There could be a global maximum and a minimum point. Global in the sense, inside the
interval, it is the maximum or minimum out of all peaks or valleys.

2. There are areas, which are local maximum or minium around those areas. There could
more than one local maximum or minimum points within the interval.

3. The slopes at these points are 0 or also undefined (sharp turn), that is f ′(x) = 0 at these
points. All these points are called critical points.

4. Suppose the interval is [a,b]. Then the end points are a and b are not critical points,
because anyway f ′(a) and f ′(b) would be 0 or undefined.

https://youtu.be/lDY9JcFaRd4
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5. Not all critcal points, which have slope 0, becomes a global or local maximum or minimum
point. It could have just flattened.

3.2.3 Decreasing or Increasing Interval

Inspired from this video from Khan Academy.

Decreasing interval

Suppose f(x) = x5(x − 3). Below is how the function looks like. We need to find the interval
within which the function is decreasing. Just by eyeballing, we could know that the green area is
where the function is decreasing, but we are not clear of the exact intervals. This would could find
mathematically.

Note that, any tangent line drawn on the curve in the green area will have a negative slope
as shown by a blue line. This means, f ′(x) < 0 in those areas. This is the clue. Finding the
derivatives, we get

f ′(x) = 6x5 − 15x4

f ′(x) < 0 =⇒ (6x5 − 15x4) < 0 =⇒ (3x4)(2x− 5) < 0

But 3x4 > 0 always for any x due to even power, so only possibility should be (2x− 5) < 0 or
x < 2.5. This means the exact interval where function is decreasing is −∞ < x < 2.5. Below is the
python implementation of the curve with tangent.

https://youtu.be/KblYjo1Ijws
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Similarly we could also see where x > 2.5, the curve is increasing. Summarizing,

Decreasing or Increasing Interval

� If f ′(x) > 0, then f(x) is increasing.

� If f ′(x) < 0, then f(x) is decreasing.

� If f ′(x) = 0, then its a critical point unless flat trap or endpoints.

3.2.4 Flat Traps

As said earlier, not all critical points are either global or local maxima or minima. The flat
regions might trick one to thin that is a maximum or minimum point. This is where, a small
test around the critical point becomes important. Taking a small interval of values around the
point, and depending on if f ′(x) is increasing or decreasing below and above the point, one could
conclude if that critical point was just a flat or extrema (let us refer all critical points which qualify
as maximum or minimum as extremum). Refer 1, 2 and practice in same session.

3.2.5 Absolute Minima or Maxima (entire domain)

We already saw a hint to avoid flat traps which we could use to identify the extremum points.
Imagine a function like below f(x) = x2. Just by eyeballing we could say, it decreases for interval
x = (−∞, 0) and increases for x = (0,∞). So the absolute minimum happens at x = 0, but how
do we prove that mathematically.

https://youtu.be/x09FpMmGB4A
https://youtu.be/-ihDprWkcY8
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We know when the slope is negative, the function is decreasing, and increasing if positive. We
could just take a value before and after our critical point, and see if that is the case, to decide if
the critical point is minimum or maximum. Let us first find the critical point for f(x) = x2 in
the interval [−∞,∞]. Note, this interval should either be explicitly or implicity defined before we
try assessing the critical points. Here, we are able to take entire infinite range because of the ever
increasing nature of the function before and after critical point.

f ′(x) = 2x

When x < 0, for eg, x = −2, then f ′(x) = 2(−2) = −4 < 0, so its decreasing.
When x > 0, for eg, x = 2, then f ′(x) = 2(2) = 4 > 0, so its increasing.

Thus, we infer, before critical point, the given function x2 is decreasing, and after critical point,
the given function x2 is increasing. Thus the critical point should be a minimum. Since this is in
entire domain, this is an absolute minimum point for the function x2. Refer 1 for another example
where the domain is implicit in the function.

If we get more than 1 critical point within the interval, then simply taking the maximum of all
the f(x) values at those critical points, will give absolute or global maximum point.

3.2.6 Concavity

It is tedious every time to take values around the first derivative so let us try an easier method
of taking second derivative.

Let f(x) = x(x− 3)2. The function, and its derivatives will look like below.

https://youtu.be/Xhc7Hens0f8
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By eyeballing, one could see, f(x) reaches a maximum at x = 1. Understandly, in 2nd graph,
we could observe, that f ′(x)x=1 = 0. Note the 2nd derivative in 3rd graph is giving one more
information, that it is negative. That is, f ′′(x)x=1 < 0.

f(x) reaches a minimum at x = 3. Understandly, f ′(x)x=3 = 0 again. And f ′′(x)x=3 > 0, that
is, its positive, indicating that the original functino f(x) is increasing.
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f(x) reaches an inflection point at x = 2. It is a point at which , the first derivative reaches a
minimum as seen in 2nd graph. Note at this point, f ′′(x)x=2 = 0. In terms of original function, it
is a point at which the curve stops being a concave (concave downward) and becomes a conves (or
concave upward).

Thus by observing the 2nd derivative, one could conclude about whether a critical point is
maximum or minimum or inflection. However, there is a trap, this method is not very rigorous.
Refer 1 which explains about the trap.

Concavity of given function

� If f ′′(x) > 0 at f ′(x) = 0, then f(x) is increasing.

� If f ′′(x) < 0 at f ′(x) = 0, then f(x) is decreasing.

� If f ′′(x) = 0 and f ′(x) 6= 0, then its an inflection point. But not always.

3.2.7 Surface Plots

The same concepts could also be directly transferred to 3D plots via partial derivatives. For eg,
for a function f(x, y), given one of the variables, say x is a constant k, a critical point occurs when
∂f(x, y)

∂y

∣∣∣∣
x=k

= 0. Similarly when y = k, critical point is expected at
∂f(x, y)

∂x

∣∣∣∣
y=k

= 0

Let us consider an example z = f(x, y) = (y − x)2. If we plot the figure, we could already
observe that its ever increasing on two directions and has one valley, where the minimum must be
occuring. The contour is also shown on XY plane, where one could observe the minimum value
occurs along the valley line.

https://www.quora.com/How-can-a-second-derivative-be-equal-to-zero-at-a-maximum-Shouldnt-it-always-be-less-than-zero
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Taking partial derivative with x as constant,

∂f(x, y)

∂y
=
∂(x− y)2

∂y
= 2(x− y)(−1) = −2(x− y)

Assigning it to 0, we get,

−2(x− y) = 0 =⇒ (x− y) = 0 =⇒ x = y

In fact that is what we observed in above diagram. The critical points are in fact a line defined
by x = y denoted by dotted white line above. Let us observe what happens for other possibility
(we could already observe from graph, that it should result in same output x = y), there are no
other critical lines. Taking partial derivative with y as constant,

∂f(x, y)

∂x
=
∂(x− y)2

∂x
= 2(x− y)(1) = 2(x− y)

Assigning it to 0, we get,

2(x− y) = 0 =⇒ (x− y) = 0 =⇒ x = y

The same answer. Thus, we are able to mathematically find the critical point. Remember,
the first derivative only tells it could be a critical point, not already maximum or minimum, that
should be done after wards. In our case, from the graph we got the hint its a minimum, but not
yet mathematically.

Second order Trap

However, we cannot just directly interpret second order partial derivatives for f(x, y) like we
did for one variable functions. In fact that would be inconclusive. Something more is needed.

Let us try. We shall keep y as constant, say y = 3. Taking second order derivative, w.r.t x

∂2f(x, y)

∂x
=
∂2(x− y)2

∂x
=
∂2(x− y)

∂x
= 2 > 0

This should mean, our function f(x, y) should be increasing, but if you look at y = 3 plane,
you could observe that as x is increasing, the function decreased. However, if you look at the plane
y = −3, f(x, y) is indeed seem to be increasing with x. This is illustrated in Fig 3.1.

Similarly, if we try to keep x as constant, and take partial derivative w.r.t y,

∂2f(x, y)

∂y
=
∂2(x− y)2

∂y
=
∂ − 2(x− y)

∂x
= −2(−1) = 2 > 0

Again we see a similar predicament. Observe for both x = −3 and x = 3 as shown in Fig
3.2. The inconclusivness is because, there is more to surfaces or two variable functions f(x, y)
compared to single variable ones. Apart from minium, maximum they also have saddle points.
And the possible second order partial derivatives are not just two as we saw, but four as below.

fxx =
∂f2

∂x2

fyy =
∂f2

∂y2

fxy =
∂f2

∂x∂y
=

∂f2

∂y∂x
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Thus in case of surfaces, by making a first order partial differentiation w.r.t x and y, what we
would get could also be a maximum or minimum or also a saddle point. The method to classify
via second order as I just said, is little bit more involved. We will revisit and resume in future if
needed, but for a quick dip on working that as well with an example, refer here

http://personal.maths.surrey.ac.uk/S.Zelik/teach/calculus/max_min_2var.pdf
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