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Chapter 1

Covariance

1.1 Why

Earlier in regression, we said, by eyeballing, one could roughly conclude if a viable regression
line possible that could be useful. But that of course, is not a rigorous approach to decide upon
the goodness of relation between two variables. Note that for all below variation in X and Y, we
could still draw a regression line, but it is obvious, for those closer to linear relationship between
them positively or negatively will benefit from regression line than those who do not.
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We need a rigorous reliable mathematical measure for linear relationship between X and Y

1.2 What

Relationship Definition

Let X and Y be the random variables involved, and each point representing a (x, y) pair value.
What we want to see is, how is each point located with respect to every other point in the given
sample set. Also we want to know if that is in a positive or negative way. Imagine a pair of points
(x1, y1) and (x2, y2). Let x1 and x2 be in increasing order, then if (y2 > y1) we could say, the
pair is in a positive relationship. We could also sort y1, y2, · · · in increasing order, and then say if
x2 > x1, then the pair is in a positive relationship. By positive we just mean, with increasing x the
y increases. The negative relationship is defined simply the opposite of it, that is, with increasing
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x, the y decreases. Or with increasing y, the x decreases. Consequently, in terms of points we
could say, given y1 < y2 , if x1 > x2, then its a negative relationship. Summarizing we could stick
to below convention, but one could try the alternate also.

Given (x1, y1), (x2, y2) and y is in increasing order, i.e., (y1 < y2),
if (x1 < x2) or (x2 − x1 > 0), this implies x has increased with y, a positive relationship
if (x1 > x2) or (x1 − x2 > 0), this implies x has decreased with y, a negative relationship

Visual Quantification via Colored Rectangles

Now that we have defined the relationship, next should think about quantification. After all,
what we seek is a measure, a quantification of the relationship. How could we quantitatively
differentiate the defined relation between pairs say, [(x1, y1), (x2, y2)] and [(x3, y3), (x4, y4)]? This
could be approached with geometry. Imagine drawing a rectangle based on [(x1, y1), (x2, y2)], say
R12 and [(x3, y3), (x4, y4)], say R34 separately. Then one rectangle’s area would be smaller or larger
than the other, indicating a quantified measure of how farther apart the points are comparitively.
Also, we could color the area to indicate if the involved pair that is used to construct the rectangle is
in a positive or negative relationship. To construct a rectangle out of two points [(x1, y1), (x2, y2)],
we could just consider them as a two oppositing corners of the rectangle, and simply draw one whose
sides are parallel to the axes. Let us color green for a positive relationship and red for a negative
relationship. Such a visual quantification is illustrated below. Note that, a certain transparency
is maintained for each rectangle, so the overlapping does not hide any information, but simply
transparent to us.

Area of a rectangle, Rij = (xi − xj)(yi − yj) (1.1)
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1.3 Area Distribution

Of course we have not drawn all possible combinations above for given set of points
(x1, y1), (x2, y2), (x3, y3), (x4, y4) to establish first the basic idea, but that is what we would do
for any given set of points:Plot all such relationship rectangles for every point with every other
point in the given sample. We want to know for each and every point in given set, its relationship
with every other point, quantitatively. However there is a problem.

If we try to plot for every possible pair of given set of data, there will be symmetri-
cally distributed duplicity which not only introduces redundancy in the measure, but also
neutrlizes our visualization

That is, if (xi, yi) is a positive relationship with (xj , yj), it also means (xj , yj) is in negative
relationship with xi, yi in other direction. Trying to take all possible rectangle will have this
duality for all rectangles. For example, by iterated dual looping if at one iteration if (xi, yi) =
(1, 2), (xj , yj) = (3, 4), then down the line, when j takes i value, we have, (xi, yi) = (3, 4), (xj , yj =
(1, 2)). In terms of rectangle notation, for every Rij , there is Rji which is of equal value.

Thus the flaw in the visualization already strongly suggests not to take all rectangles for the
measure but may be, just half of it as representative of entire sample set. Below are the total
number of rectangles for N = 6 pairs of sample sets. The blue shaded is symmetrical to yellow
shaded. This is why the measure would be inherently doubled if all rectangles are taken into
account. By nature, it is not needed. Think about it. Taking all possible rectangles, simply means,
looking for a linear relationship in one direction and then again, in reverse, and deciding that the
relationship is null. We should instead decide to take in to account only one direction,which means,
only half of below rectangles would sufficely give a measure of relationship in one direction. Also
note the diagonal rectangles have zero area, thus can be neglected too.
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Thus, we would just go with only either blue or yellow rectangles as illustrated above. Let us
look closer at the product (xi − xj)(yi − yj) for all rectangles. The no of rectangles in the half we

are interested in is given by
N(N − 1)

2
. If N = 6, you could observe we have

(6)(5)

2
= 15 rectangles

as our interest out of N2 = 62 = 36 rectangles.
If we untangle the rectangle information systematically,we could come up with a summation to

calculate the total value as below. Let us consider the yellow rectangles (you could try the blue
ones)

� Let i = 1, then R12 +R13 +R14 +R15 +R16 =
6∑

j=i+1
R1j

� Let i = 2, then R23 +R24 +R25 +R26 =
6∑

j=i+1
R2j

� Let i = 3, then R34 +R35 +R36 =
6∑

j=i+1
R3j

� Let i = 4, then R45 +R46 =
6∑

j=i+1
R4j

� Let i = 5, then R56 =
6∑

j=i+1
R5j

We could thus consilidate the total area of our interest as,

Total Interested Area, TIA =
5∑
i=1

6∑
j=i+1

Rij

When i = 6, j = i+ 1 = 7, and there is no R67, or R67 = 0, so we could rewrite slightly as,

TIA =
6∑
i=1

6∑
j=i+1

Rij

Using 1.1, and generalizing to N ,
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TIA =

N∑
i=1

N∑
j=i+1

(xi − xj)(yi − yj) (1.2)

Alternate approach: We instead could have taken all area, and then simply divided by 2. Here,
the derivation is straight forward. For N = 6, there are N2 = 36 rectangles possible. And as
indexed in last diagram, the total area would be,

Total Area =

N∑
i=1

N∑
j=1

Rij

Using 1.1 and taking the half as that is our interested area, we get,

TIA =
1

2

N∑
i=1

N∑
j=1

(xi − xj)(yi − yj) (1.3)

Both 1.2 and 1.3 are equivalent, but 1.2 gives a better intuition, what we are after. Let us take
a closer look next at the rectangular area distribution.

Case 1 : Perfectly positively linearly related dataset (whew!)

Suppose we have such a case as below. you could note, this is of line y = 2x

� X = 1,2,3,4,5,6

� Y = 2,4,6,8,10,12

Then, every possible rectangle for each pair of [(xi, yi), (xj , yj)] is tabulated below. This illus-
trates the redundancy better. Note the repetitive values symmetrically spread from the diagonal
lines. The color gradient gives a better perspective of the spread. The actual plot of the sample
set is given on the right side.

1 2 3 4 5 6
X

2
4

6
8

10
12

Y

0 2 8 18 32 50

2 0 2 8 18 32

8 2 0 2 8 18

18 8 2 0 2 8

32 18 8 2 0 2

50 32 18 8 2 0

Area of Rectangles

1 2 3 4 5 6
X

2

4

6

8

10

12

Y

Actual Plot of Sample Set

Using 1.2 or 1.3, TIA for given sample set, turns out to be 210
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In[33]: X , Y= [1,2,3,4,5,6],[2,4,6,8,10,12]

N = len(X)

def get_TIA(X,Y):

N = len(X)

comb_l, area = sorted(zip(X,Y), key=lambda x: x[1]), 0 #sorting w.r.t Y

for i in range(0,N): # equivalent for i = 1 to N because, range is 0 to N-1

for j in range(i+1,N):

X1, Y1, X2, Y2 = comb_l[i][0], comb_l[i][1], comb_l[j][0], comb_l[j][1]

d1, d2 = X2 - X1, Y2 - Y1

area += d1*d2

return area

print(get_TIA(X,Y))

210

Case 2 : Perfectly negatively linearly related dataset

Suppose we have such a case as below. you could note, this is of line y = 14− 2x

� X = 1,2,3,4,5,6

� Y = 12,10,8,6,4,2

For this, let us check the rectangles’ area.

1 2 3 4 5 6
X

12
10

8
6

4
2

Y

0 -2 -8 -18 -32 -50

-2 0 -2 -8 -18 -32

-8 -2 0 -2 -8 -18

-18 -8 -2 0 -2 -8

-32 -18 -8 -2 0 -2

-50 -32 -18 -8 -2 0

Area of Rectangles
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We see something interesting here. If you might have thought, some way the rectangular area
also represented actual plot could notice it here that the area plot on left hand side is still similarly
symmetrical as before, even though the plot is perfectly negatively related as shown on RHS. This
is because, that was its definition in first place. The rectangular area plot on LHW just gives a
measure of the spread of relationship, while the plot on RHS represents the actual location. Also
note, that again, due to symmetry, we have duplicate values, thus suggesting to halve the measure.
And the values are negative. This is good, now that could help to indicate our sample sets are
negatively linearity related. Let us check out the TIA.

In[35]: X , Y= [1,2,3,4,5,6],[12,10,8,6,4,2]

print(get_TIA(X,Y))
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-210

Its negative. We are already getting somewhere! Let us consider another case, where there is
no linear relationship.

Case 3 : Dataset with no linear relationship

Suppose we have such a case as below.

� X = 1,2,3,4,5,6

� Y = 12,10,8,8,10,12

The respective rectangle area and plots are as below.

1 2 3 4 5 6
X

12
10

8
8

10
12

Y

0 0 -2 4 -8 12

0 0 -4 2 -12 8

-2 -4 0 0 -2 8

4 2 0 0 -8 2

-8 -12 -2 -8 0 0

12 8 8 2 0 0

Area of Rectangles

1 2 3 4 5 6
X

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

Y

Actual Plot of Sample Set

Again, irrespective of actual plot, the area graph on LHS, is still symmetrical if you look
carefully, assuring, no matter what, the measure is available in doubled quantity across all possible
rectangles, so good golly gosh, we chose half of the rectangles. Note the RHS plot, there is clearly
not a possibility of a best fit linearity between X and Y, and this should reflect in our measure.
Let us calculate the TIA.
In[37]: X , Y = [1,2,3,4,5,6],[12,10,8,8,10,12]

print(get_TIA(X,Y))

0

Understandly it is 0. The no linear relationship in a literal sense has been transformed to a
number via our TIA. Recall,

� for a perfectly positively linearly related dataset, we got +210
� for a perfectly negatively linearly related dataset, we got -210
� for a perfectly not linearly related dataset, we got 0

Thus our TIA is already proving to be a good measure. Note that, if we had taken all rectangles
and getting 420,-420,0 instead, it would be an unnecessarily doubled stretch, giving a doubled sense
of actual linearly underneath. By halving the area, that is via TIA, we have taken the linearity
sense in a kind of same scale of what it is.
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Case 4: A practical realistic dataset

Suppose we have such a case as below.

� X = 2.2, 2.7, 3, 3.55, 4, 4.5, 4.75, 5.5
� Y = 14, 23, 13, 22, 15, 20, 28 , 23

The respective rectangle area and plots are as below.

1 2 3 4 5 6 7 8
X

14
23

13
22

15
20

28
23

Y

0 0 2 10 4 -2 25 26

0 0 1 13 10 4 29 35

2 1 0 2 -3 -10 12 9

10 13 2 0 -1 -5 3 2

4 10 -3 -1 0 0 1 7

-2 4 -10 -5 0 0 0 10

25 29 12 3 1 0 0 -3

26 35 9 2 7 10 -3 0

Area of Rectangles

2.5 3.0 3.5 4.0 4.5 5.0 5.5
X

14

16

18

20

22

24

26

28

Y

Actual Plot of Sample Set

You see, even for a realistic sample set which has some linearity associated in either direction
(positive or negative), the LHS area diagram has a symmetry as usual. This would always be
the case, thus we are right in taking the half no of rectangles, no matter what the linearity is.
Proceeding to TIA, we get it as

In[39]: X , Y = [2.2, 2.7, 3, 3.55, 4, 4.5, 4.75, 5.5],[ 14, 23, 13, 22, 15, 20, 28 , 23]

print(get_TIA(X,Y))

184.39999999999995

The tikzmagic extension is already loaded. To reload it, use:

%reload ext tikzmagic

1.4 Visualization

Now that we have seen TIA is already doing a good job on giving us a measure of the linearity,
we shall come to the core of this section. We have not yet visualized the totality of the rectangles.
We could have done this earlier, but I wanted to instill a strong sense of what rectangles are we
dealing with and why they are whole representative of the dataset though we have taken only half
of all possible rectangles. We initially decided how do we color the rectangles, based on positive
or negative relationship as a convention, and then looked in detail, what are the rectangles to be
plotted. Let us consider the sample sets as below. Recall these were the same sample sets we
saw in the beginning of this section. Note the TIA is already calculated indicating us the kind of
relationship. As per TIA from Figure 1.2, Plot 1 is highly negatively correlated, Plot 2 is somewhat
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Figure 1: The Sample Sets
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Figure 2: The Visualization of Covariance

negative, and Plot 3 is positively correlated. Though visually Plots 1 and 3 look like not having
much difference in their slope or rate, our TIA gives a wide difference in value. This is because,
TIA between sample sets are not comparable (we will solve that soon in correlation, but remember
this problem). That is, given a sample set, say Plot 1, having -148859 is one of infinite no of
possibilities among that sample set, with perfectly linear positive, negative and 0 TIA as one of
those. Simiarly for sample set in Plot 2 and so on. Below are the sample sample plots with colored
rectangles laid over them. Remember, if N is the size of sample set, or no of (x, y) pairs, then the
number of rectangles we have drawn is N(N − 1)/2. And as we already saw, only because of this
limited rectangles, we get the output as below without neutralization issues.

I think, Figure 1.2 speaks for itself :) Plot 1,which has highly negative linear relationship
among its sample sets, has more red rectangles than green. Plot 2, which is very less linearity
in any direction, shows an almost equal mix of red and green, of course the accurate measure is
reflected in its TIA though. Plot 3, which has a positive linear relationship, obviously has lot more
green. Figure 1.3 gives total area of red and green separately, giving us better glimpse of the net
relationship underneath. The TIA is just the difference between the total green area and red area.
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Figure 3: The separated total area
Green indicates Positive

1.5 Expected value of TIA

For any given sample set, we are typically interested not in the total of the sample set, but most
probable or best representative candidate of that sample set. In our case, our sample set of TIA, is
not individual pairs (xi, yi), but a function of them, a product (xi−xj)(yi−yj). That is, using 1.2 if,

h(X,Y ) =
N∑
i=1

N∑
j=i+1

(xi − xj)(yi − yj)

then, we are interested in E[h(X,Y )]
As per expectation formula,

E[h(X,Y )] =
N∑
i=1

N∑
j=i+1

(xi − xj)(yi − yj)p(xi, yi) (1.4)

Note, we are not interested in expected value of number of rectangles or red colored
rectangles etc. The area of rectangles carry the measure and each rectangle might have
different area. We are thus interested in the expected value of the area, given the total
interested area.

Expectation needs a joint probability mass function p(X,Y ) associated with h(X,Y ). Recall
the rectangle graph for N = 6 and replace with area Aij (could also call as product, Pij but just
to avoid notational confusion with probability let us stick with area).

Assuming each area has equal probability, given the number of area, each Aij will have a

probability of
1

N2
as there are N2 area components possible. Thus, 1.4 becomes,

E[h(X,Y )] =
N∑
i=1

N∑
j=i+1

(xi − xj)(yi − yj)p(xi, yi) =
1

N2

N∑
i=1

N∑
j=i+1

(xi − xj)(yi − yj) (1.5)
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Figure 4: The Number of Area Components

Ladies and Gentlemen. That E[h(X,Y )] is called Covariance of X and Y , shortly called
Cov(X,Y). Also note, the alternative form we saw earlier in equation 1.3, could also be used to
derive covariance as below.

E[h(X,Y )] =
N∑
i=1

N∑
j=i+1

(xi − xj)(yi − yj)p(xi, yi) =
1

2N2

N∑
i=1

N∑
j=1

(xi − xj)(yi − yj) (1.6)

Covariance of discrete X and Y with p(X Y) uniform

Given X and Y are discrete variables of sample size N, and p(X,Y ) =
1

N2
,

Cov(X,Y ) =
1

N2

N∑
i=1

N∑
j=i+1

(xi − xj)(yi − yj) (1.7)

Cov(X,Y ) =
1

2N2

N∑
i=1

N∑
j=1

(xi − xj)(yi − yj) (1.8)

1.6 Standard Formula

What we have seen so far, is a deformed form of covariance which numerically gave us the same
results as a standard formula. It is mathematically possible to show that,

Cov(X,Y ) =
N∑
i=1

N∑
j=i+1

(xi − xj)(yi − yj)p(xi, yi) =
N∑
i=1

(xi − x)(yi − y)p(xi, yi) (1.9)
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Figure 5: The Visualization of deformed and standard formula
for Covariance

The derivation is proven by Zhang et al. [5]. At the time of this writing, the doubts in the
derivation is not yet cleared, if and once it is done, this section should be enriched with a proper
derivation. Till then, this is a discontinuity in our understanding. The visualization of standard
formula is slightly different because it involves mean, so all rectangles have one corner at mean
position (x, y). The visualization is shown in figure 1.5. The top 3 rows from our deformed formula
and bottom 3 using standard formula. One could observe, the rectangles in plots 3,4,and 5 are
centered around the mean (shown in dotted lines), thus giving a better viusal perception of the
measure (no of red or green rectangles, which is more). We did not start with this visualization
only because, there was no intuition to introduce mean in the equation out of no where.

1.7 Generalization

So far we have seen Covariance for discrete X, Y random variables. This could easily be
transferred to continuous variables as well. However before generalization of the formula, we need
to generalize the way the sample set is provided as well.

Suppose the sample set is given as (X,Y ) = (x1, y1), (x2, y2), (x3, y3) · · · (xN , yN ) then, if we say
equi probable, then p(X,Y ) could be simply tabulated in different ways depending on the function
h(X,Y ) that is, if we take the deformed or standard formula. This is illustrated in figure 1.6. This
was simply because, of the way we indexed the sample points. In Plot A, we do not have a (x2, y1),
because we just numbered as (x1, y1), (x2, y2), (x3, y3) · · · (xN , yN ), and it worked because standard
formula needed only one time indexing via i. But in Plot B, we had double indexing via i, j, this

https://math.stackexchange.com/questions/2982674/single-to-double-summation-via-vector-matrix-problem
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1

N2

y5
1

N2

1

N2

1

N2

1

N2

1

N2

1

N2

y4
1

N2

1

N2

1

N2

1

N2

1

N2

1

N2

y3
1

N2

1

N2

1

N2

1

N2

1

N2

1

N2

y2
1

N2

1

N2

1

N2

1

N2

1

N2

1

N2

y1
1

N2

1

N2

1

N2

1

N2

1

N2

1

N2

x1 x2 x3 x4 x5 x6x
y

Plot B
p(X,Y ) for deformed formula

h(Xi, Yi, Xj , Yj) =
(Xi − Xj)(Yi − Yj)

p(X,Y ) depending on h(X,Y )

is why the probability at each cell also became 1/N2. Most often we do not use the deformed
formula and stick to standard formula. Further, often the given probability density function (if
given), would be something like this.

Here our indexing style has to differ. Now we have (x1, x2) = (100, 250) and (y1, y2, y3) =
(0, 100, 200). If we line up these sample pairs, we get

(x1, y1), (x1, y2), (x1, y3), (x2, y1), (x2, y2), (x2, y3)

Thus even with standard formula due to data being in a different format, we would need to
use double summation in order to vary i and j to different limits separately. Thus naturally our
standard formula would become

Cov(X,Y ) =
2∑
i=1

3∑
j=1

(xi − x)(yj − y)p(xi, yi)
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Generalizing the standard formula, and also extending to continuous X and Y, we could say,

Generalized Standard Covariance Formula

The covariance between two rv’s X and Y is

Cov(X,Y ) = E[(X − µx)(Y − µY )]

=


∑
x

∑
y

(x− µx)(y − µy)p(x, y) X,Y discrete

∫∞
−∞

∫∞
−∞(x− µx)(y − µy)f(x, y)dxdy X,Y continuous

(1.10)

Depending on samples are from population or we deal with entire population, either x or µX
could be used respectively.

1.8 Example

We have already explained the concept with an example, so here will see a different approach.
Suppose joint and marginal pmf’s for X = automobile policy deductible amount and Y =

homeowner policy deductible amount are as below. Find the covariance.

This example was taken from Devore [1] Since we need the means in the equation, let us calculate
them first.

µx =
2∑
i=1

xipX(xi) = 100(0.5)+250(0.5) = 175µy =
2∑
i=1

yipY (yi) = 0(0.25)+100(0.25)+200(0.5) = 125

Coming to Covariance,
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100 250

0

100

200

TIV visualization in 2D

X

100

250 Y
0

100
200

0.05
0.10
0.15
0.20

0.25

0.30

TIV visualization in 3D

Figure 6: The Visualization of standard formula in 2D and 3D

Cov(X,Y ) =
2∑
i=1

3∑
j=1

(xi − µx)(yj − µy)p(xi, yj)

= (x1 − 175)(y1 − 125)p(x1, y1) + (x1 − 175)(y2 − 125)p(x1, y2) + (x1 − 175)(y3 − 125)p(x1, y3)

+(x2 − 175)(y1 − 125)p(x2, y1) + (x2 − 175)(y2 − 125)p(x2, y2) + (x2 − 175)(y3 − 125)p(x2, y3)

= (100− 175)(0− 125)p(100, 0) + (100− 175)(100− 125)p(100, 100) + (100− 175)(200− 125)p(100, 200)

+(250− 175)(0− 125)p(250, 0) + (250− 175)(100− 125)p(250, 100) + (250− 175)(200− 125)p(250, 200)

= (100− 175)(0− 125)0.20 + (100− 175)(100− 125)0.10 + (100− 175)(200− 125)0.20

+(250− 175)(0− 125)0.05 + (250− 175)(100− 125)0.15 + (250− 175)(200− 125)0.30

= 1875

What just happpened? How come we took all possible pairs of (x, y) given in joing pmf as
samples? Earlier, when we visualized TIA for random samples, we assumed that h(X,Y ) had
equal probability for all of its values, thus resulting in a constant probability for entire summation.
So it was enough if we look at it from the sky or top or whatever. If the probability density in the
summation is a variable, then just by looking at 2D, we are missing the contribution of pmf to the
summation. Now that we have varying pmf for different pairs of x, y, we need to account for that,
because pairs having higher probability will attract more samples than those that would not, thus
potentially forming a relationship between X and Y. This is evident the moment we visualize in 3D
as shown in figure 1.7. In 3D, it is evident now, the green has more volume, than red, so we could
expect higher samples in these region than the red, thus suggesting in fact a positive correlation.
Thus, yeah it is no more just a TIA ,but total interested volume, TIV. Also, a pmf resembles
all possible values of (x, y), so could imagine, sample set of all possible values in any multiples (1
occurance per pair, or 10 occurance per pair, etc).
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Generalized Standard Covariance Visualization

The better generalized visualization of standard covariance formula is in volume, if underlying
joint probability density function is not a constant.

Cov(X,Y ) =
∑
x

∑
y

(xi − x)(yi − y)p(xi, yi)

= (x1 − x)(y1 − y)p(x1, y1) + · · ·+ (xi − x)(yi − y)p(xi, yi) + · · ·
= V11 + · · ·+ Vij + · · ·

(1.11)
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Correlation

2.1 Why

Covariance has some painful disadvantages. There is no standard scale with which we could
compare and say, the number obtained is high correlation. When we measure, say a distance of
10m, we do not just have the measure 10, we also understand the size of it because we have a
standard scale for 1m. This allows us to compare with another distance, say 15m, and accurately
understand the difference between them. This type of standardization or normalization is missing
in our Covariance value.

Further, it is highly unit dependent as we are just multiplying two RVs of different units (the 3rd
factor probability we multiply with, anyway is unitless). This means, if units change, our measure
also could drastically change. Imagine the last example. If X and Y , the deductibles were in cents,
then they just scale by 100 times in the summation. Note what this leads to.

Cov(X,Y ) =
∑
x

∑
y

(100x− 17500)(100y − 12500)p(x, y)

= (100)(100)
∑
x

∑
y

(x− 175)(y − 125)p(x, y)

= 10000(1875)

= 18750000 cents2

Apart from a very high value, note the ugly units tag sticking with it. Though a covariance
could give us a measure, this is not as useful as a unit like meters. Ideally, we would wish, our
measure is units independent. Summarizing,

Covariance’s main disadvantages

� Critically dependent on units of random variables being compared

� Not comparable with other covariance values

2.2 What

The idea to tackle the issue is by, well as said, standardization or normalization with something,
thereby making it a ratio, due to which the units cancel out between numerator and denominator.

18
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(x1, y1)
True Regression Line

y = β̂0 + β̂1x

∆y1

x1

E(Y |x1)
= µY.x1

Figure 2.1: Recalling the regression line

This already suggests we need two quantities of same units of X and Y in the denominator of
Covariance. Let us recall the equation of simple linear regression model between two Random
variables (figure 2.1).

The regression line is given by

E(Y |x) = β0 + β1x

Ŷ |x = β̂0 + β̂1x

where β̂1 =

∑
i(yi − y)(xi − x)∑

i(xi − x)2

β̂0 = y − β̂1x (2.1)

What would it mean, when the slope β̂1 is 0 for this regression line?

β̂1 = 0

=⇒ Ŷ |x = β̂0 = y

This is simply an horizontal line drawn parallel to x axis, cutting at y = y. So, if such is the
case, that for given sampe, β̂1 is 0, we could already say, their covariance is 0, because for any x,
y remains constant at y. This is illustrated in Figure 2.2.

Note in case of regression line, we took a variable X and evaluated the relationship of another
variable Y via E(Y |x). Thus naturally the reversed case is also possible that is E(X|y). This is
simply achieved by reversing the variables in regression line equation 2.1

E(X|y) = β2 + β3y

X̂|y = β̂2 + β̂3y

where β̂3 =

∑
i(yi − y)(xi − x)∑

i(yi − y)2

β̂2 = x− β̂3y (2.2)
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True Regression Line

y = β0 + β1x

x

y y = y
C(x, y)

X

Y

Figure 2.2: When the slope is zero..

Again, when β3 = 0, that is slope of regression line E(X|y) is 0, we get,

β̂3 = 0

=⇒ X̂|y = β̂2 = x

Figure 2.3 illustrates plotting of both lines, along with zero correlation lines.

True Regression Line

E(Y |x) = β0 + β1x

True Regression Line

E(X|y) = β2 + β3y

x

y y = y

x = x

C(x, y)

X

Y

Figure 2.3: Two possible regression lines E(Y |x), E(X|y)

Summarizing, in current case of regression, we have,

� E(Y |x) gives Y variation which is not same as variation indicated by E(X|x)

� y = y indicates zero variation of Y for any x, and x = x, vice versa.

What we need is a single unified quantitative measure for reducing the disadvantages of Covari-
ance. Note that we are dealing with samples, so our formula for unbiased sample covariance and
variance, as referenced in Zaiontz [4], would be
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cov(X,Y ) =
1

N − 1

N∑
i

(xi − x)(yi − y)

var(X) = s2
x =

1

N − 1

N∑
i

(xi − x)2

var(Y ) = s2
y =

1

N − 1

N∑
i

(yi − y)2

Using them in the slopes, we get,

β̂1 =

∑
i(yi − y)(xi − x)∑

i(xi − x)2
=

1

N − 1

∑
i(yi − y)(xi − x)

1

N − 1

∑
i(xi − x)2

=
cov(X,Y )

s2
x

Similary for β̂3. Summarizing, now we have, slopes in terms of sample covariance and variances,

β̂1 =
cov(X,Y )

s2
x

, β̂3 =
cov(X,Y )

s2
y

(2.3)

Thus,

Ŷ |x = β̂0 +
cov(X,Y )

s2
x

x

X̂|y = β̂2 +
cov(X,Y )

s2
y

y

Now, covariance is symmetric. X is as covariant with Y as Y is with X. Check the formula
again.

cov(X,Y ) =
1

N − 1

N∑
i

(xi − x)(yi − y) =
1

N − 1

N∑
i

(yi − y)(xi − x) = cov(Y,X)

However, as we saw, this cannot be said for Ŷ |x and X̂|y. But imagine below form for a moment.

Ŷ |x = 0 +
cov(X,Y )

1
x

X̂|y = 0 +
cov(X,Y )

1
y

If we some how magically make the y-intercept of Ŷ |x, and x-intercept of X̂|y go away, and
make the variance 1, we could have a symmetry effect for both Ŷ |x and X̂|y. This could be done
by standardizing the sample set. Recall during Z transformation, we did the same. By shifting the
sample set or distribution to its mean, and scaling by the standard deviation, we essentially achieve
a standard distribution which could be comparable to any other standardized distribution (Recall
Z scores). Such a standardized distribution will have 0 mean and variance as 1.
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Lemma

For a population described by RV, X(µ, σ2)

Z =
X − µ
σ

E(Z) = E

(
X − µ
σ

)
=

1

σ

(
E(X)− µ

)
=

1

σ

(
µ− µ

)
= 0

Var(Z) = Var

(
X − µ
σ

)
= Var

(
X

σ
− µ

σ

)
= Var

(
X

σ

)
=

1

σ2
Var(X) =

σ2

σ2
= 1

Standardizing our sample set

Applying the same principles to our sample set, if we transform as follows,

Xs =
X − x
sX

, Ys =
Y − y
sY

where sX , sY are the standard deviation of X and Y respectively, then, we have new samples
set (Xs, Ys), where

xs = ys = 0

sXs = sYs = 1

The new standardized set gives rise to new regression lines as follows.

Ŷs|xs = β̂0s +
cov(Xs, Ys)

s2
Xs

xs

X̂s|ys = β̂2s +
cov(Xs, Ys)

s2
Ys

ys

Using equations 2.1, and 2.2 we get,

β̂0s = xs − β̂1sys = 0− β̂1s(0) = 0

β̂2s = ys − β̂3sxs = 0− β̂3s(0) = 0

Using that, and since sXs = sYs = 1, we finally get new regression lines as,

Ŷs|xs = cov(Xs, Ys)xs

X̂s|ys = cov(Xs, Ys)ys

Figure 2.4 illustrates the resultant regression lines. One could notice both these lines are
symmetric because they both have same slope with respect to their independent axis.

The new standardized sample covariance cov(Xs, Ys) has very useful properties we have been
longing so far.

� cov(Xs, Ys) would be now unitless and would vary between ±1 as we would observe shortly

� the covariance is now made symmetric, that is Xs is as covariant with Ys as Ys is with Xs

� this does not mean, the new regression lines are same. They just have same slope meaning
they are symmetric
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E(Ys|xs) = cov(Xs, Ys)xs

E(Xs|ys) = cov(Xs, Ys)ys

ys = ys = 0

xs = xs = 0

C(0, 0)

Xs

Ys

Figure 2.4: Two standardized regression lines E(Ys|xs), E(Xs|ys)

All the above points would become evident, once we observe a detailed example.

Covariance of Standardized Sample Sets

By standardizing the sample set, we are able to achieve interesting symmetric regression
lines of same slope

Ŷs|xs = cov(Xs, Ys)xs

X̂s|ys = cov(Xs, Ys)ys (2.4)

where cov(Xs, Ys) is unitless and varies between ±1

2.3 Examples

Example 1: A single simple sample set

Assume below is the given sample set. Let us plot both the direct simple regression line and
standardized one to note the differences.

X Y

2.2 14
2.7 23
3 13
3.55 22
4 15
4.5 20
4.75 28
5.5 23

In[17]: x_i = [2.2, 2.7, 3, 3.55, 4, 4.5, 4.75, 5.5] # a sample set

y_i = [14, 23, 13, 22, 15, 20, 28, 23]

fig, axr = plt.subplots(1,2, figsize=(12,5))

plot_regs(x_i, y_i, axr[0], std=False, label='Fig A: Raw Sample Set')

plot_regs(x_i, y_i, axr[1], std=True, std_full=True, label='Fig B: Fully Standardized

Sample Set')

plt.show()
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Note the regression line equations in both figures. In Figure B, as expected, both lines get the
same slope which is standardized covariance Cov(Xs, Ys). Note the value of the common slope. It
is positive and less than 1, this tells both sample sets are related linearly to an extent.

Example 2: Wikipedia Sample set

Let us try a perfectly covarying example. This is taken from Wikipedia’s Pearson Correlation
Coefficient article 1

X Y

1 0.11
2 0.12
3 0.13
5 0.15
8 0.18

In[18]: x_i = [1,2,3,5,8] # a sample set

y_i = [0.11,0.12,0.13,0.15,0.18]

fig, axr = plt.subplots(1,2, figsize=(12,5))

plot_regs(x_i, y_i, axr[0], std=False, label='Raw Sample Set')

plot_regs(x_i, y_i, axr[1], std=True, std_full=True, label='Fully Standardized Sample

Set')

plt.show()

1https://en.wikipedia.org/wiki/Pearson correlation coefficient
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Aha! When the dataset is perfectly linearly related, we get the standardized covariance slope
as 1. Ain’t we getting somewhere?

Example 3: With different linear relationships

To test the different values of standardized covariance, we shall generate different datasets, that
has perfect linearity in both directions (positive and negative), and also some what in the middle,
including no linearity.
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Note carefully.

� When the given dataset is perfectly negatively linearly related (Plot 00,01), cov(Xs, Ys) = −1

� When the given dataset is somewhat negatively linearly related (Plot 10,11), −1 <
cov(Xs, Ys) < 0

� When the given dataset is totally not linearly related (Plot 20,21), cov(Xs, Ys) = 0

� When the given dataset is somewhat positively linearly related (Plot 30,31), 0 < cov(Xs, Ys) <
1

� When the given dataset is perfectly positively linearly related (Plot 40,41), cov(Xs, Ys) = 1

Thus, not only that our standardized covariance got rid of units, but also retains value between
±1, perfectly reflective of the linear relationship in the dataset. Thus we observe empirically via
examples the range of standardized covariance.

2.4 Formalization of Sample and Population Correlation

The standardized covariance with its unique characteristic is thus called Pearson’s Correla-
tion Coefficient, r as it was formalized by Pearson. It is not required to standardize the sample
set everytime, and calculate the standardized covariance as slope of the resultant regression line.
We could calculate directly from the given sample set as below.

r = cov(Xs, Ys) =
1

N − 1

N∑
i=1

(xis − xs)(yis − ys)

Since standardized,
xs = ys = 0

xis =
xi − x
sX

, yis =
yi − y
sY

∴ r =
1

N − 1

N∑
i=1

(xis)(yis) =
1

N − 1

N∑
i=1

(
xi − x
sX

)(
yi − y
sY

)

=
1

sXsY

1

N − 1

N∑
i=1

(xi − x)(yi − y)

=
cov(X,Y )

sXsY

Thus the sample correlation coefficient r of a given sample set (X,Y ) is given by

r =
cov(X,Y )

sXsY

By analogy, a population correlation coefficient could also be derived. If (X,Y ) are two discrete
RVs, with X = x1, x2, · · · , xN , and Y = y1, y2, · · · , yM , and if p(X,Y ), p(X), p(Y ) are their joint
and marginal pmf s respectively, then a population correlation coefficient ρ could be defined as,
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ρ =

∑
x

∑
y(x− µX)(y − µY )p(X,Y )√∑

x(x− µX)2p(X)
∑

y(y − µY )2p(Y )
(2.5)

where, µX , µY , σX , σY are respective population parameters of X and Y. Recalling Covariance
and Variance formula for population as below,

Cov(X,Y ) =
∑
x

∑
y

(x− µX)(y − µY )p(X,Y )

σ2
X =

∑
x

(x− µX)2p(X)

σ2
Y =

∑
y

(y − µY )2p(Y )

and using that, one could rewrite ρ as

ρ =

∑
x

∑
y(x− µX)(y − µY )p(X,Y )√∑

x(x− µX)2p(X)
∑

y(y − µY )2p(Y )
=

Cov(X,Y )

σXσY
(2.6)

Sample and Population Correlation

The sample correlation coefficient, r of any given sample set (X,Y ) is given by

r =
cov(X,Y )

sXsY
(2.7)

The population correlation coefficient, ρ of any given discrete RVs (X,Y ) is given by

ρ =
Cov(X,Y )

σXσY
(2.8)

Similar ρ applicable to continuous RVs also, with integration suitably placed in place of
summation.

2.5 Cosine Similarity

Interestingly correlation factor could be visualized to an extent in vector form or at least provides
us easier computational method of calculation via matrices. Suppose there is a sample set (X,Y )
of size 3. That is, if (X,Y ) = {(x1, y1), (x2, y2), (x3, y3)}, we could represent them in a 3D vector
form as below

~x = x1î+ x2ĵ + x3k̂

~y = y1î+ y2ĵ + y3k̂

In simpler matrix notation,
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~x = [x1, x2, x3]

~y = [y1, y2, y3]T

Using law of cosines, the angle θ between vectors ~x, ~y can be calculated as

cosθ =
~x • ~y
‖x‖‖y‖

where

~x • ~y =

[
x1 x2 x3

] y1

y2

y3

 =

x1

x2

x3

 •
y1

y2

y3

 = x1y1 + x2y2 + x3y3 =
3∑
i

xiyi

and

‖x‖ =
√
x2

1 + x2
2 + x2

3 =

√∑
i

x2
i

‖y‖ =
√
y2

1 + y2
2 + y2

3 =

√∑
i

y2
i

Readers are strongly advised to go through appendix 3.1 where the concept is explained in
detail and also concluded that the above relation is applicable to any higher dimensional vector.
Thus, recalling equation 3.9 from appendix, if the sample set size is N , then we could represent in
matrix form and extend the cosine relationship as follows.

Let

~x = [x1, x2, x3, · · · , xN ]

~y = [y1, y2, y3, · · · , yN ]T

then,

~x • ~y =

[
x1 x2 · · · xN

] 
y1

y2
...
yN

 =


x1

x2
...
xN

 •

y1

y2
...
yN

 = x1y1 + x2y2 + · · ·+ xNyN =

N∑
i

xiyi

and

‖x‖ =
√
x2

1 + x2
2 + · · ·+ x2

N =

√√√√ N∑
i

x2
i

‖y‖ =
√
y2

1 + y2
2 + · · ·+ y2

N =

√√√√ N∑
i

y2
i

so,

cosθ =
~x • ~y
‖x‖‖y‖

=

∑N
i xiyi√∑N

i x
2
i

√∑N
i y

2
i
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If we subtract the mean of the RVs, from each of the elements as below, setting up centered
vectors,

~xc = [x1 − x, x2 − x, x3 − x, · · · , xN − x]

~yc = [y1 − y, y2 − y, y3 − y, · · · , yN − y]T

this similarly leads to

cosθ =
~xc • ~yc
‖xc‖‖yc‖

=

∑N
i (xi − x)(yi − y)√∑N

i (xi − x)2

√∑N
i (yi − y)2

which is same as sample correlation coefficient, r. Note that, the value of cosine ranges between
±1. So when both vectors are in same direction, the θ is 0, thus cosθ = 1, maximum value indicating
perfect linearity. Similarly when both vectors are in opposite direction, θ = 180◦, implying cosθ
= -1. When the vectors are perpendicular to each other, θ = 90◦ implying cosθ = 0, thus zero
correlation.

For those, who find it difficult to comprehend higher dimensional vector, remember that in any
higher dimensional vector, the angle between the resultant two vectors is always on a plane (2D),
thus the law of cosine still applies. This is also explained in appendix 3.1

Cosine Similarity

The sample correlation coefficient, r of any given sample set (X,Y ) can also be expressed in
vector matrix form, giving a cosine relationship as

r = cosθ =
~xc • ~yc
‖xc‖‖yc‖

=
cov(X,Y )

sXsY
(2.9)

where, ~xc and ~yc indicate centered dataset
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Appendix

3.1 Dot Product

3.1.1 Angle between two 2D unit vectors

Suppose we have two unit vectors û, v̂ on a plane as shown in figure 3.1. We are interested in
finding the angle between them θ which gives a measure of how much apart the vectors are. That
is, quite a low angle, could say, both vectors are kind of in similar direction, and around 180 could
mean, they are kind of in opposite direction and so on. We said unit vectors, but any vector to be
called as a unit vector, it should satisfy the property that their magnitude is 1.

θ

û

v̂

i

j

X

Y

Figure 3.1 Two unit vectors

Thus, if

û = u1î+ u2ĵ

v̂ = v1î+ v2ĵ

then, one should choose magnitudes, u1, u2, v1, v2 such that,

‖u‖ =
√
u2

1 + u2
2 = 1

‖v‖ =
√
v2

1 + v2
2 = 1

31
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Using Pythagoras theorem, if we assume ‖u‖ = K, a constant, then as shown in figure 3.2,

u1 = Kcosβ

u2 = Ksinβ

β

û

K

u1 = Kcosβ

u2 = Ksinβ

Figure 3.2 Magnitudes should add up to 1

‖u‖ =

√
K2cos2β +K2sin2β = K = 1

Thus, we could conclude, for û to be unit vector,

u1 = cosβ

u2 = sinβ

We could similarly show that, if the angle spanned by v̂ is α, then

v1 = cosα

v2 = sinα

Note that, θ = β − α as shown in Figure 3.3.
According to Ptolemy’s difference 1 from trignometry, one could write,

cos(β − α) = cosβcosα+ sinβsinα

Decomposing it as a product matrix,

cos(β − α) =

[
cosβ sinβ

] [
cosα
sinα

]
cosθ =

[
u1 u2

] [
v1

v2

]
Whatever we are doing on the RHS above, we call that as dot product of vectors û, v̂. It is

just that we define that quantity as a dot product, which is denoted by û • v̂.

1https://www2.clarku.edu/faculty/djoyce/trig/ptolemy.html
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β
αθ

û

v̂

i

j

X

Y

Figure 3.3: θ = β − α

Angle between two 2D unit vectors

cosθ = û • v̂ =

[
u1 u2

] [
v1

v2

]
= u1v1 + u2v2 (3.1)

3.1.2 Angle between two 2D non unit vectors

Suppose we have non unit vectors, ~a,~b as shown in figure 3.4. We could derive their respective
unit vectors easily by dividing with their magnitude.

Let

~a = a1î+ a2ĵ

~b = b1î+ b2ĵ

θ

~a

û

~b

v̂

î

ĵ

X

Y

Figure 3.4: Dot product between non unit vectors ~a and ~b
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Then, their magnitudes will be,

‖a‖ =
√
a2

1 + a2
2

‖b‖ =
√
b21 + b22

The unit vectors could easily derived by scaling down to find unit x and y components

û =
a1

‖a‖
î+

a2

‖a‖
ĵ

v̂ =
b1
‖b‖

î+
b2
‖b‖

ĵ

By using 3.1,

cosθ = û • v̂ =

[
a1

‖a‖
a2

‖a‖

]
b1
‖b‖

b2
‖b‖


=

a1

‖a‖
b1
‖b‖

+
a2

‖a‖
b2
‖b‖

=
a1b1 + a2b2
‖a‖‖b‖

Taking ‖a‖‖b‖ to the other side,

‖a‖‖b‖cosθ = a1b1 + a2b2 =

[
a1 a2

] [
b1
b2

]
= ~a •~b

Thus,

‖a‖‖b‖cosθ = ~a •~b

or cosθ =
~a •~b
‖a‖‖b‖

(3.2)

And we already have,

~a •~b =

[
a1 a2

] [
b1
b2

]
= a1b1 + a2b2 (3.3)

which is in Matrix Multiplication form. It is also conventional to write the same as in vector
dot form as below.

~a •~b =

[
a1

a2

]
•
[
b1
b2

]
= a1b1 + a2b2 (3.4)

Angle between two 2D non unit vectors

cosθ =
~a •~b
‖a‖‖b‖

~a •~b =

[
a1 a2

] [
b1
b2

]
=

[
a1

a2

]
•
[
b1
b2

]
= a1b1 + a2b2 (3.5)
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θ

A

Bû

v̂

î

ĵ

~a

~b

~c

O X

Y

Figure 3.5: Dot Product
Setup for Alternate Proof

3.1.3 Law of Cosines

It is difficult to comprehend equation 3.1.1 in higher dimensions., so it could be helpful to try
an alternate approach to derive the dot product. Suppose we have two vectors ~a,~b. Then a 3rd
vector ~c could be drawn making a triangle, such that, ~a+ ~c = ~b

Since ~a+ ~c = ~b, this implies, ~c = ~b− ~a. Expanding,

c1î+ c2ĵ = (b1î+ b2ĵ)− (a1î+ a2ĵ)

= (b1 − a1)̂i+ (b2 − a2)ĵ (3.6)

Thus, their magnitudes also are equal.

‖~c‖ =
√
c2

1 + c2
2 =

√
(b1 − a1)2 + (b2 − a2)2 = ‖~b− ~a‖ (3.7)

Let us draw perpendicular line from corners of the triangle and also have two more angles β, α
defined as shown in figure 3.7.

Then,

‖~a‖ = OA

‖~b‖ = OB

‖~c‖ = AB = AD + DB

By Pythagoras theorem, we could then say,

AB = AD + DB = OAcosβ + OBcosα

OA = OE + EA = OBcosθ + ABcosβ

OB = OF + FB = OAcosθ + ABcosα

Let AB = c,OA = a,OB = b, then
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θ

β

α

A

Bû

v̂

î

ĵ

~a

~b

~c

O

D
E

F X

Y

Figure 3.7: Introducing Perpendicular lines and
two more angles α, β

c = acosβ + bcosα

a = bcosθ + ccosβ

b = acosθ + ccosα

Multiplying by the variable on LHS for all above three equations, we get,

c2 = accosβ + cbcosα

a2 = abcosθ + accosβ

b2 = abcosθ + cbcosα

Combining as below,

(a2 + b2)− c2 = abcosθ +���
�accosβ + abcosθ +���

�cbcosα

−����accosβ −����cbcosα = 2abcosθ

Thus,
c2 = (a2 + b2)− 2abcosθ

=⇒ AB2 = (OA2 + OB2)− 2(OA)(OB)cosθ

=⇒ ‖c‖2 = ‖a‖2 + ‖b‖2 − 2‖a‖‖b‖cosθ

For simplicity, we shall use c = ‖c‖, a = ‖a‖, b = ‖b‖ interchangeably.

Law of Cosines

The law of cosines states that, the lengths of the sides of a triangle could be related to cosine
of one of its angles as below

c2 = (a2 + b2)− 2abcosθ

‖c‖2 = ‖a‖2 + ‖b‖2 − 2‖a‖‖b‖cosθ (3.8)
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3.1.4 Angle between two 2D non unit vectors - Alternate Proof

Having established the law of cosines, we could then use that, to prove again the equation 3.5.
Noting that,

a2 = a2
1 + a2

2

b2 = b21 + b22

Also note, from equation 3.7,

c = b− a, =⇒ c2 = (b− a)2 = (b1 − a1)2 + (b2 − a2)2

Using both relations, we could thus re write equation 3.8 as,

2abcosθ = (a2 + b2)− c2

= (a2
1 + a2

2) + (b21 + b22)− (b1 − a1)2 − (b2 − a2)2

= (a2
1 + a2

2) + (b21 + b22)− (b21 + a2
1 − 2a1b1)− (b22 + a2

2 − 2a2b2)

= ��a
2
1 + ��a

2
2 +��b

2
1 +��b

2
2 −��b

2
1 − ��a

2
1 + 2a1b1 −��b

2
2 − ��a

2
2 + 2a2b2

= 2(a1b1 + a2b2)

∴ abcosθ = a1b1 + a2b2

Thus,

cosθ =
a1b1 + a2b2

ab
=

~a •~b
‖a‖‖b‖

which is same as equation 3.5.

3.1.5 Angle between two higher dimensional non unit vectors

As said earlier, law of cosines could be used similarly for higher dimensions. This is because,
at any higher dimension, the angle between two vectors is still on a plane that contains the two
vectors, thus on that plane, the relation we just saw, apply. Figure 3.7 illustrates the case for 3
dimensions.

x

y

z

θO

A

B

~a

~b

Figure 3.7: Law of Cosine applicable
in any n > 1 dimensions

Thus, if we define 3 dimensional vectors as below
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~a = a1î+ a2ĵ + a3k̂ = 〈a1, a2, a3〉
~b = b1î+ b2ĵ + b3k̂ = 〈b1, b2, b3〉

~c = ~b− ~a = (b1 − a1)̂i+ (b2 − a2)ĵ + (b3 − a3)k̂

then using 3.8,

2abcosθ = (a2 + b2)− c2

= (a2
1 + a2

2 + a2
3) + (b21 + b22 + b23)− [(b1 − a1)2 + (b2 − a2)2 + (b3 − a3)2]

= (a2
1 + a2

2 + a2
3) + (b21 + b22 + b23)− [b21 + a2

1 − 2a1b1 + b22 + a2
2 − 2a2b2 + b23 + a2

3 − 2a3b3

=((((
((((a2

1 + a2
2 + a2

3) +((((
((((b21 + b22 + b23)− [((((

((((b21 + b22 + b23) +((((
((((a2

1 + a2
2 + a2

3)− 2a1b1 − 2a2b2 − 2a3b3]

= 2(a1b1 + a2b2 + a3b3)

∴ abcosθ = a1b1 + a2b2 + a3b3

Thus,

cosθ =
a1b1 + a2b2 + a3b3

ab
=

~a •~b
‖a‖‖b‖

which is same as equation 3.5.
In fact, we could also prove for any n dimensional vector as below even if we are unable to

visualize beyond 3D. Note the short form used to denote the vector. If we define n dimensional
vectors as below

~a = 〈a1, a2, a3, · · · , an〉
~b = 〈b1, b2, b3, · · · , bn〉

~c = ~b− ~a = 〈(b1 − a1), (b2 − a2), · · · , (bn − an)〉

then using 3.8,

2abcosθ = (a2 + b2)− c2

= (a2
1 + a2

2 + a2
3 + · · ·+ a2

n) + (b21 + b22 + b23 + · · ·+ b2n)−
[(b1 − a1)2 + (b2 − a2)2 + (b3 − a3)2 + · · ·+ (bn − an)2]

= (a2
1 + a2

2 + a2
3 + · · ·+ a2

n) + (b21 + b22 + b23 + · · ·+ b2n)−
[b21 + a2

1 − 2a1b1 + b22 + a2
2 − 2a2b2 + · · ·+ b2n + a2

n − 2anbn]

=
((((

(((
((((

(
(a2

1 + a2
2 + a2

3 + · · ·+ a2
n) +

((((
(((

((((
(

(b21 + b22 + b23 + · · ·+ b2n)−

[
((((

(((
((((

(
(b21 + b22 + b23 + · · ·+ b2n) +

((((
(((

((((
(

(a2
1 + a2

2 + a2
3 + · · ·+ a2

n)−
(2a1b1 + 2a2b2 + · · ·+ 2anbn)]

= 2(a1b1 + a2b2 + a3b3 + · · ·+ anbn)

∴ abcosθ = a1b1 + a2b2 + a3b3 + · · ·+ anbn

Thus,

cosθ =
a1b1 + a2b2 + a3b3 + · · ·+ anbn

ab
=

~a •~b
‖a‖‖b‖
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Angle between two any n dimensional non unit vectors

For any two n > 1 dimensional vectors, the angle between them could always be calculated
as,

cosθ =
a1b1 + a2b2 + a3b3 + · · ·+ anbn

ab
=

~a •~b
‖a‖‖b‖

(3.9)

This is true, even when we are unable to comprehend visually beyond 3D vectors, because
the angle between two vectors is always on a plane (2D) no matter the dimensionality of the
vectors is.
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